And Separation Of Solid From Contact Liquid Patents (Class 95/205)
  • Patent number: 9433234
    Abstract: Disclosed herein is a composition for removing odor, the composition including cucurbituril. The composition can capture and remove various kinds of odor materials (particularly, ammonium ion-containing bad odor, such as a fishy smell or the like) because cucurbituril can interact with various odor materials using its hydrophobic cavity and both inlets covered with carbonyl groups. Therefore, this composition can be practically applied to the cleaning of air and the improvement of an environment.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 6, 2016
    Assignee: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Kimoon Kim, Young Ho Ko, Su Hyun Lee, Selvapalam Narayanan, Don Wook Lee
  • Patent number: 9267104
    Abstract: Provided herein are methods, devices and systems comprising a reactor that is operatively connected to: (a) a biogas production unit for converting waste to a biogas stream; and (b) an engine that utilizes the biogas stream from the biogas producing unit to produce energy and an engine exhaust.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: February 23, 2016
    Assignee: BIOGAS & ELECTRIC, LLC
    Inventor: Michael Matelich
  • Patent number: 9090496
    Abstract: The present application relates to systems and methods for processing organic materials. The method may, for example, yield nutrient-rich materials that may have various agricultural uses. The method can include, in some embodiments, forming a slurry from components comprising liquid and organic material; combining the slurry with microorganisms to form a biomass; anaerobically digesting the organic material in the biomass; and at least partially separating liquid components from the digested biomass. In some embodiments, the anaerobic digestion produces low amounts of methane. The systems may, in some embodiments, be configured to perform the method of processing organic materials.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 28, 2015
    Assignee: WISERG CORPORATION
    Inventors: Jose Lugo, Larry LeSueur
  • Publication number: 20150107451
    Abstract: Radon is removed from a gas in an apparatus comprising: (a) a liquid-contacting apparatus having a shielded reservoir containing a fresh working liquid in which radon is soluble; and (b) a means for causing a stream of gas containing radon to pass through the liquid-contacting apparatus. When the radon level in the working liquid reaches a certain level, the working liquid is either taken out of service and stored until the radon level is reduced or the working liquid is diluted with additional working liquid having no radon.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Colin G. Meyer, Allan H. Moyse
  • Publication number: 20150083425
    Abstract: An improved method for the removal of non-targeted components from a non-targeted component containing gas stream, the method includes the steps of: (i) contacting the non-targeted component containing gas stream with a fluid solvent stream; (ii) passing the product of step i) through a co-current phase separation step to produce both a non-targeted component containing solvent stream and a partially purified gas stream; (iii) passing the partially purified gas stream product of step ii) through a mass transfer step to produce a wet gas product; and (iv) passing the wet gas product of step iii) through a final co-current phase separation step to produce a purified gas stream, wherein the method is performed in a subsea location.
    Type: Application
    Filed: May 8, 2013
    Publication date: March 26, 2015
    Applicant: RELEASE ENERGY PTY LTD
    Inventors: John Dermot Sullivan, David Stanbridge
  • Patent number: 8926792
    Abstract: A method for on-site dissemination and disposal of all wastewaters or leachate, that is generated by a landfill or other wastewater generating site includes collecting the wastewater or leachate which comprises an aqueous solution, having solids, elements and compounds of concern therein. The wastewater or leachate is directed to an “Integrated Mobile Aerosolization System (IMAS)” having a turbine and being integrated and mobile. The turbine is driven so as to generate a fully integrated and mobile system of highly accelerated air that moves through the IMAS. An integrated pump is utilized to move the leachate or wastewater to a series of nozzles that aerosolizes the leachate or wastewater into the path of the system of air to form an air-wastewater mixture or an air-leachate mixture.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: January 6, 2015
    Inventor: Kelly K. Houston
  • Publication number: 20140338533
    Abstract: A method for separating overspray produced during the painting of objects, the overspray is absorbed by an air flow and transported to a separating surface of a separating device over which a separating liquid flows. A large part of the overspray merges with the separating liquid, is transported away by said separating liquid, and is removed from the separating liquid by separation. Separating liquid is fed to the separating surface using a dispensing device, which is arranged so that the total discharge mass flow (GM) of the separating liquid is dependent at least on the viscosity of the separating liquid. Furthermore, separating liquid having a predetermined inlet mass flow (ZM) is fed to the dispensing device, wherein the inlet mass flow (ZM) of the dispensing device is equal to the total mass flow (GM), and the viscosity of the separation liquid during the operation of the separation device is calculated.
    Type: Application
    Filed: September 5, 2012
    Publication date: November 20, 2014
    Applicant: EISENMANN AG
    Inventor: Michael Schlipf
  • Patent number: 8871008
    Abstract: Capturing a target gas includes contacting a gas mixture including a target species with an aqueous solution including a buffer species, and transferring some of the target species from the gas mixture to the aqueous solution. The target species forms a dissolved target species in the aqueous solution, and the aqueous solution is processed to yield a first aqueous stream and a second aqueous stream, where the equilibrium partial pressure of the target species over the second aqueous stream exceeds the equilibrium partial pressure of the target species over the first aqueous stream. At least some of the dissolved target species in the second aqueous stream is converted to the target species, and the target species is liberated from the second aqueous stream. The target species can be collected and/or compressed for subsequent processing or use.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: October 28, 2014
    Assignee: Carbon Engineering Limited Partnership
    Inventors: Matthew Alex Henderson, David William Keith, Arvinder Pal Singh Kainth, Kenton Robert Heidel, Jane Anne Ritchie
  • Patent number: 8871009
    Abstract: A method of reducing siloxane contamination in an effluent gas is described, where one embodiment of the method comprises directing the effluent through a reactor comprising a dialkyl terminated glyme solvent having a molecular size less than about 300 Daltons, the dialkyl terminated glyme serving to physically absorb the siloxanes from the effluent; polymerizing the siloxanes by directing them through a packed bed of acidic resin catalyst media housed within the reactor and immersed within the solvent so as to create polymerized siloxanes having a molecular size greater than about 300 Daltons, that are soluble in the solvent; and separating the polymerized siloxanes from the solvent via nanofiltration; and recycling the solvent into the reactor for further physical absorption of incoming siloxanes.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 28, 2014
    Inventor: Subramanian Iyer
  • Publication number: 20140252276
    Abstract: A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
    Type: Application
    Filed: September 27, 2012
    Publication date: September 11, 2014
    Applicant: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Daniel Michael Leo, Shawn Robert Freitas, Dave G. Newport, Hamilton Sean Michael Whitney, Daniel A. Burciaga
  • Patent number: 8821731
    Abstract: A method is provided of regenerating solvents used to remove gaseous contaminants from gaseous mixtures of various compositions with significantly reduced energy required, where one exemplary method includes directing a solution with the solvents and the preferentially absorbed and/or dissolved gaseous contaminants through a filter comprising a membrane having pre-determined diffusion rates so that a substantial portion of the gaseous contaminants pass through the filter, permitting the passage of the gaseous contaminants through the membrane for further processing, and recirculating the separated solvent so that it may be used again to remove new gaseous contaminants. In some cases, it may be desired to permit some of the solvent to pass through the membrane along with the gaseous contaminant.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: September 2, 2014
    Inventor: Subramanian Iyer
  • Patent number: 8801832
    Abstract: Methods for removing sulfur from a gas stream prior to sending the gas stream to a gas separation membrane system are provided. Two schemes are available. When the sulfur content is high or flow is relatively high, a scheme including two columns where one tower is regenerated if the sulfur concentration exceeds a preset value can be used. When the sulfur content is low or flow is relatively low, a scheme including one column and an absorption bed.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: August 12, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Milind M. Vaidya, Jean-Pierre R. Ballaguet, Sebastien A. Duval, Anwar H. Khawajah
  • Patent number: 8795413
    Abstract: The object of the invention is a method for dissolving carbon dioxide from flue or other gas and for the neutralization of the solution obtained. The gas, in which the partial pressure of carbon dioxide is at least 0.4 bar, is led to a dissolution process, where the major part of the carbon dioxide is dissolved into a flow of water. The aqueous solution of carbon dioxide thus obtained is neutralized by passing it through a material containing feldspar minerals, at which time the hydrogen ions of said solution are replaced by ions of alkali or alkaline earth metals, and the aluminum in said material is converted into aluminum compounds that can be separated and utilized.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Cuycha Innovation Oy
    Inventor: Matti Nurmia
  • Patent number: 8702842
    Abstract: A method for removing elemental sulfur from a hot gas stream, such as an autoclave vent gas, while simultaneously cooling the gas stream. The method results in conversion of sulfur in the hot gas stream to the form of solid, non-sticky sulfur allotropes such as rhombic sulfur while avoiding formation of sticky sulfur allotropes such as monoclinic sulfur, thereby avoiding scaling and fouling of plant equipment. According the method, the hot gas stream is contacted with an aqueous medium containing a particulate material inside a quench vessel having a first inlet for the hot gas stream, a second inlet for the aqueous medium, and an outlet for removing a sulfur-containing liquid fraction from the vessel. At least a portion of the sulfur contained in the hot gas stream, along with other condensable materials, becomes incorporated into the aqueous medium and is subsequently drained from the vessel.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 22, 2014
    Assignee: Hatch Ltd.
    Inventors: Kevin S. Fraser, William E. McCombe
  • Patent number: 8647413
    Abstract: A method for recovering carbon dioxide (CO2) from a gas stream is disclosed. The method includes the step of reacting CO2 in the gas stream with fine droplets of a liquid absorbent, so as to form a solid material in which the CO2 is bound. The solid material is then transported to a desorption site, where it is heated, to release substantially pure CO2 gas. The CO2 gas can then be collected and used or transported in any desired way. A related apparatus for recovering carbon dioxide (CO2) from a gas stream is also described herein.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Robert James Perry, Benjamin Rue Wood, Sarah Elizabeth Genovese
  • Patent number: 8628603
    Abstract: A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 14, 2014
    Assignee: Energy & Enviromental Research Center Foundation
    Inventors: Christopher L. Martin, Ye Zhuang
  • Patent number: 8603424
    Abstract: CO2-sequestering formed building materials are provided. The building materials of the invention include a composition comprising a carbonate/bicarbonate component. Additional aspects of the invention include methods of making and using the CO2-sequestering formed building material.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 10, 2013
    Assignee: Calera Corporation
    Inventors: Brent R Constantz, Andrew Youngs, Terence C Holland
  • Publication number: 20130319236
    Abstract: A scrubber system for treating exhaust gas in a marine vessel with a water based solution includes a first scrubber unit and a second scrubber unit, an exhaust gas inlet in the first scrubber unit and an exhaust gas outlet in the second scrubber unit and a second conduit section connecting the first scrubber unit to the second scrubber unit, a first scrubbing medium circuit and a second scrubbing medium circuit. The first scrubber medium circuit is provided with a source of scrubbing solution having a first connection to an outside of a hull of the vessel beneath the water line of the vessel and the second scrubber medium circuit is provided with a source of scrubbing solution having a source of fresh water in the vessel.
    Type: Application
    Filed: February 15, 2012
    Publication date: December 5, 2013
    Applicant: Wartsila Finland Oy
    Inventor: Ari Suominen
  • Publication number: 20130276631
    Abstract: This invention relates to a method for removing carbon dioxide in an exhaust gas utilizing seawater, and to apparatuses for removing carbon dioxide by the method. The method includes producing a concentrated seawater having an increased concentration of salt by utilizing a reverse osmosis membrane method, producing an ammonia-saturating concentrated seawater by blowing ammonia into the concentrated seawater, contacting a non-heated exhaust gas with the ammonia-saturating concentrated seawater such that carbon dioxide is absorbed in the ammonia-saturating concentrated seawater, collecting a sediment of sodium hydrogen carbonate, and collecting ammonium chloride from a solution comprising the ammonium chloride produced by absorption of the carbon dioxide in the ammonium-saturating concentrated seawater.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 24, 2013
    Inventors: Kenji SANO, Yukishige Maezawa, Toru Ushirogouchi
  • Patent number: 8551221
    Abstract: Carbon Dioxide capture processes utilizing ammonia, or ammonia in water as the capture fluid for carbon dioxide generate concentrated solutions of ammonium carbonate species in water, which are subsequently decomposed to capture the carbon dioxide and recycle the ammonia. Forward osmosis processes utilize ammonium carbonate species as draw solutions to pull water from saline solutions such as seawater in the ammonium carbonate solution. The ammonium carbonate solution is then heated to decompose the ammonium carbonate to ammonia and CO2 which are both reused, while a portion of the aqueous stream is recovered as pure water. Combination of carbon capture process with an integrated forward osmosis process provide great economies over standalone operations. Furthermore, the very high concentrations of ammonium carbonate provide a further opportunity to include osmotic power recovery cycles with the integrated forward osmosis and carbon capture process.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: October 8, 2013
    Inventor: Thomas D. Wolfe
  • Patent number: 8512445
    Abstract: The present invention relates to systems and processes for reducing the amount of carbon dioxide in a carbon dioxide-containing gas. In particular, the carbon dioxide-containing gas is contacted with a carbonate-containing solution. At least a portion of carbon dioxide in the carbon dioxide-containing gas is absorbed in the carbonate-containing solution to produce a carbon dioxide-, carbonate-containing solution. A heat recovery mechanism is employed to recover heat from the carbon dioxide-, bicarbonate-, carbonate-containing solution exiting the chamber to maintain the temperature of the chamber within a range of from about 50° C. to about 90° C.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 20, 2013
    Inventors: Shiaoguo Chen, Zijiang Pan
  • Patent number: 8486182
    Abstract: According to one embodiment, a method for removing carbon dioxide in an exhaust gas utilizing seawater includes: blowing ammonia into seawater to produce ammonia-saturated seawater; contacting an exhaust gas under a state of non-heat with the ammonia-saturated seawater so that carbon dioxide in the exhaust gas is absorbed in the ammonia-saturated seawater; and splaying a solution containing sodium hydrogen carbonate and ammonium chloride which are produced through absorption of the carbon dioxide by the ammonia-saturated seawater utilizing pressure of the exhaust gas while cooling the solution utilizing heat of evaporation of a solvent of the solution so as to settle out and recover the sodium hydrogen carbonate and the ammonium chloride.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: July 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Sano, Yukishige Maezawa, Toru Ushirogouchi
  • Patent number: 8475563
    Abstract: In a method of treating a gas stream, an aqueous scrubbing liquor is circulated through an essentially closed loop (20) comprising an electrochemical unit (48) for reducing the acidity of the liquor. A portion of the circulating liquor is diverted away from the closed loop (20) to a gas scrubbing unit (10). The gas stream enters the scrubbing unit (10), wherein an acid, for example HF and solid particulates, for example SiO2 particulates, within the gas stream dissolve in the diverted liquor. The diverted liquor is subsequently returned to the closed loop (20), and is replenished in the scrubbing unit (10) by fresh liquor diverted from the closed loop (20). A device (46) is provided for monitoring the acidity of the liquor at a location within the closed loop (20). The reduction in the acidity of the liquor by the electrochemical cell (48) is controlled depending on the monitored concentration.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: July 2, 2013
    Assignee: Edwards Limited
    Inventors: Philip Chandler, Christopher Peter Jones, Patrick Fletcher, Christopher Germain
  • Patent number: 8470063
    Abstract: A chimney filter system featuring two or more filter housings mounted atop an industrial chimney stack and a reservoir fluidly connected to the lower filter housing via a first drain pipe that allows water to flow from the lower filter housing to the reservoir. The reservoir allows contaminants in the water to collect on the bottom surface of the reservoir. A second drain pipe is fluidly connected to the reservoir via a pump. The pump and second drain pipe deliver water from the reservoir to the upper filter housing.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: June 25, 2013
    Inventor: Hector Fernando Erazo Ortega
  • Patent number: 8431100
    Abstract: CO2-sequestering formed building materials are provided. The building materials of the invention include a composition comprising a carbonate/bicarbonate component. Additional aspects of the invention include methods of making and using the CO2-sequestering formed building material.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: April 30, 2013
    Assignee: Calera Corporation
    Inventors: Brent R. Constantz, Andrew Youngs, Terence C. Holland
  • Publication number: 20130098245
    Abstract: A Method for removing salts, which cannot be thermally regenerated in a temperature range from 0°-200° C., from organic solvents in aqueous solution by evaporation, wherein the normal boiling point of the organic solvents is higher than water. The organic components contained in the solvent and the salt-like components which are contained in the organic components are enriched by evaporating water and a portion of the organic components in a liquid phase which is formed in a first container. The salt-like components are concentrated in the liquid phase which is forming in the second container, and a partial stream of the liquid phase which is formed in the second container is discharged from the second container.
    Type: Application
    Filed: January 29, 2011
    Publication date: April 25, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventor: Johannes Menzel
  • Patent number: 8408025
    Abstract: A raw material recovery method for recovering a raw material of an organic metallic compound, which has the property of being stable toward a specific refrigerant without being decomposed thereby, from exhaust gas discharged from a treatment container in which a metallic thin film is formed on the surface of an object to be treated by using source gas obtained by vaporizing the raw material is characterized by being provided with a solidification step for solidifying the unreacted source gas by cooling the exhaust gas by bringing the exhaust gas into contact with the refrigerant and reprecipitating the raw material, and a recovery step for separating and recovering the raw material reprecipitated in the solidification step from the refrigerant. To provide a method for controlling an exhaust gas flow rate so that flow of gas in a processing chamber becomes uniform.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: April 2, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Atsushi Gomi, Yasushi Mizusawa, Tatsuo Hatano, Masamichi Hara, Kaoru Yamamoto, Chiaki Yasumuro
  • Publication number: 20130074693
    Abstract: A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ENERGY & ENVIRONMENTAL RESEARCH CENTER FOUNDATION
    Inventors: Christopher L. Martin, Ye Zhuang
  • Patent number: 8343256
    Abstract: An integrated contaminant separator and water-control loop (10) decontaminates a fuel reactant stream of a fuel cell (12). Water passes over surfaces of an ammonia dissolving means (61) within a separator scrubber (58) while the fuel reactant stream simultaneously passes over the surfaces to dissolve contaminants from the fuel reactant stream into the water. An accumulator (68) collects the separated contaminant stream, and ion exchange material (69) integrated within the accumulator removes contaminants from the stream. A water-control pump (84) directs flow of a de-contaminated water stream from the accumulator (68) through a water-control loop (78) having a heat exchanger (86) and back onto the scrubber (58) to flow over the packed bed (62). Separating contaminants from the fuel reactant stream and then isolating and concentrating the separated contaminants within the ion exchange material (69) minimizes cost and maintenance requirements.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: January 1, 2013
    Assignee: UTC Power Corporation
    Inventors: Michael T. Lines, Derek W. Hildreth, John L. Preston, Jr.
  • Patent number: 8317903
    Abstract: A contaminant is removed from a gas in a method in which the gas is contacted with a solvent for the contaminant, and the resultant solution is contacted with intercalated graphite onto which the contaminant is adsorbed. The solvent will normally comprise water, and may itself be a contaminated liquid. In a preferred method the solvent is in a reservoir with particulate intercalated graphite; the contaminated gas is delivered to the base of the reservoir; and the gas rises in the solvent mobilizing the intercalated graphite in the reservoir.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: November 27, 2012
    Assignee: Arvia Technology Limited
    Inventors: Nigel Willis Brown, Edward P. L. Roberts
  • Patent number: 8206490
    Abstract: A separator scrubber (58) and isolation loop (78) decontaminates a fuel reactant stream of a fuel cell (12). Water passes over surfaces of an ammonia dissolving means (61) within the scrubber (58) while the fuel reactant stream simultaneously passes over the surfaces to remove contaminants from the fuel reactant into the water. An accumulator (68) collects the separated contaminants and water, and an isolation loop pump (84) directs flow of the separated contaminant stream through the isolation loop (78). A heat exchanger (86) and an ion exchange bed (88) modify the heat of, and remove contaminants from, the separated contaminant stream, and the isolation loop (78) directs the decontaminated stream back onto the packed bed (62)-. Separating contaminants from the fuel reactant stream and then isolating and concentrating the separated contaminants within the ion exchange bed (88) minimizes cost and maintenance requirements.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: June 26, 2012
    Assignee: UTC Fuel Cells, LLC
    Inventors: Albert P. Grasso, John L. Preston, Jr., Francis Kocum, Richard J. Assarabowski, Derek Hildreth
  • Publication number: 20120055336
    Abstract: This invention provides a machining device with waste collection equipment, which is suitable for collecting an easily charged waste and the like, and a machining method using the machining device. In the machining device with waste collection equipment, which collects waste generated by a predetermined machining processing, the waste collection equipment is provided with a transfer path through which the waste is transferred using an air flow, a water supply device which is provided at an intermediate portion of the transfer path and supplies a predetermined amount of water to the waste thereby applying antistatic treatment to the waste, a cyclone which applies separation processing to the waste subjected to the antistatic treatment, and a collection tank which collects the waste subjected to the separation processing by the cyclone.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 8, 2012
    Applicant: NAKATA COATING CO., LTD.
    Inventor: Takemi Matsuno
  • Patent number: 8119091
    Abstract: A method of carbon dioxide capture is disclosed. In a step (a) anhydrous sodium carbonate is separated from a first aqueous solution formed by reacting carbon dioxide and an aqueous solution of sodium hydroxide. In step (b) the anhydrous sodium carbonate is treated by causticization to generate carbon dioxide and sodium hydroxide. The first aqueous solution of step (a) is formed by scrubbing a gas containing carbon dioxide with an aqueous solution of sodium hydroxide.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 21, 2012
    Assignee: Carbon Engineering Limited Partnership
    Inventors: David Keith, Maryam Mahmoudkhani
  • Patent number: 8097068
    Abstract: A diamine absorbent that contains heat stable salts is regenerated using an ion exchange process wherein the concentration of heat stable salts in the feed stream provided to the cation exchange unit is limited.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 17, 2012
    Assignee: Cansolv Technologies Inc.
    Inventors: Matthew Campbell, John Sarlis, Vijay Bhambhani Godhwani, Melina Infantino
  • Patent number: 8080087
    Abstract: A method of drying liquid and gaseous hydrocarbons by contacting a feed stream of the hydrocarbon with an aqueous solution of a salt drying agent prior to passing the stream through a salt dryer to remove part of the water in the stream. The aqueous solution of the salt drying agent is generated in the salt dryer when the partly dried stream comes into contact with the drying salt and forms the solution. The solution is circulated in a loop from the salt dryer to the incoming feed and then through a liquid/liquid coalescer which removes a portion of the water together with dissolved salt from the mixture before the mixture is passed on to the salt dryer where further removal of water occurs. The salt dryer is off-loaded by a substantial factor by the initial partial dehydration and does not require to remove such a large amount of water; the salt consumption is therefore reduced in proportion to the amount of water removed in the treatment steps which precede the dryer.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: December 20, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul
  • Patent number: 8038773
    Abstract: A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SOx, residual NOx particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N2 and O2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO2 with smaller amounts of H2O, Ar, N2, O2, SOX, NOX, Hg, and other trace gases.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 18, 2011
    Assignee: Jupiter Oxygen Corporation
    Inventors: Thomas L. Ochs, Cathy A. Summers, Steve Gerdemann, Danylo B. Oryshchyn, Paul Turner, Brian R. Patrick
  • Patent number: 8016919
    Abstract: A solution contained in a regeneration tower is supplied to a filtering unit. The filter unit filters out solid particles contained in the solution. A washing unit washes out with backwash water solid particles filtered out by the filter unit. An evaporating unit receives the backwash water containing the solid particles, and heats received backwash water thereby obtaining solid-particles concentrated backwash water.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 13, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masaki Iijima, Takashi Kamijo
  • Publication number: 20110203310
    Abstract: A raw material recovery method for recovering a raw material of an organic metallic compound, which has the property of being stable toward a specific refrigerant without being decomposed thereby, from exhaust gas discharged from a treatment container in which a metallic thin film is formed on the surface of an object to be treated by using source gas obtained by vaporizing the raw material is characterized by being provided with a solidification step for solidifying the unreacted source gas by cooling the exhaust gas by bringing the exhaust gas into contact with the refrigerant and reprecipitating the raw material, and a recovery step for separating and recovering the raw material reprecipitated in the solidification step from the refrigerant. To provide a method for controlling an exhaust gas flow rate so that flow of gas in a processing chamber becomes uniform.
    Type: Application
    Filed: August 4, 2009
    Publication date: August 25, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Atsushi Gomi, Yasushi Mizusawa, Tatsuo Hatano, Masamichi Hara, Kaoru Yamamoto, Chiaki Yasumuro
  • Patent number: 7976621
    Abstract: A power plant may include a combustion apparatus (11) producing an exhaust gas (12), an absorber (20) receiving the exhaust gas (12), the absorber (20) including a desiccant and producing a first stream of desiccant solution containing water and a first concentration of desiccant, and an apparatus (29, 70, 94) for dehydrating the first stream of desiccant solution while maintaining the water in a liquid phase. The apparatus (29, 70, 94) may include a heat exchanger (71, 110), a crystallizing heat exchanger (74, 96), a separator (78, 98) and a flash tank (112) for dehydrating the desiccant solution while maintaining water in a liquid phase and subsequently recovering water from the solution.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 12, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Fred W. Shoemaker, Michael S. Briesch, Philip G. Deen, Terrence B. Sullivan
  • Patent number: 7938889
    Abstract: A CO2 recovery system includes an absorption tower that removes CO2 from exhaust gas, a regeneration tower that regenerates a rich solution, and a separation drum that condensates steam in CO2 gas released from the regeneration tower and separates water. The CO2 recovery system further includes a filtration membrane apparatus that filters solid content remaining in the lean solution using a filter, and cleans the filter using condensed water as cleaning water and again return the condensed water into the system. The CO2-absorbing solution attached to the filter is collected and the filter is cleaned without diluting the CO2-absorbing solution upon replacement of the filter.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: May 10, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Publication number: 20110100218
    Abstract: Carbon Dioxide capture processes utilizing ammonia, or ammonia in water as the capture fluid for carbon dioxide generate concentrated solutions of ammonium carbonate species in water, which are subsequently decomposed to capture the carbon dioxide and recycle the ammonia. Forward osmosis processes utilize ammonium carbonate species as draw solutions to pull water from saline solutions such as seawater in the ammonium carbonate solution. The ammonium carbonate solution is then heated to decompose the ammonium carbonate to ammonia and CO2 which are both reused, while a portion of the aqueous stream is recovered as pure water. Combination of carbon capture process with an integrated forward osmosis process provide great economies over standalone operations. Furthermore, the very high concentrations of ammonium carbonate provide a further opportunity to include osmotic power recovery cycles with the integrated forward osmosis and carbon capture process.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Inventor: Thomas D. Wolfe
  • Publication number: 20110084020
    Abstract: A method for removing methane from biogas is described. The method includes: (i) receiving biogas including methane and other components into a first tank; (ii) receiving water into the first tank; (iii) contacting the biogas with the water inside the first tank; (iv) dispensing methane gas from an outlet of the first tank; and (v) producing from the tank an effluent stream that includes other components of the biogas.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 14, 2011
    Inventor: Christopher OTT
  • Patent number: 7896955
    Abstract: Disclosed is a process for removing coarse solids and fine solids from a gas, which includes wetting the coarse solids and fine solids in a first chamber thereby separating the coarse solids and fine solids from the gas. The first chamber also contains liquid to cool the coarse solids and the fine solids. The coarse solids and fine solids are routed to a liquid-filled second chamber where the coarse solids settle to the bottom. The liquid in the second chamber, still containing the fine solids is flushed into a third chamber where the fine solids are separated from the liquid. The separated fine solids and coarse solids are then routed to a fourth chamber.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: March 1, 2011
    Assignee: General Electric Company
    Inventors: Paul Steven Wallace, Jyung-Hoon Kim
  • Patent number: 7875103
    Abstract: Systems and related methods for separating liquids and particulate from a flowing gas stream include a separation vessel containing a liquid injector, an impingement separator or a helical impingement separator, and a waste liquid recovery tank. Separated liquid and particulate collect in a sump, flow into a recovery tank, and may be filtered in a side stream duplex filter circuit for return into the recovery tank and re-injection into the separation vessel. The helical separator element has outwardly extending helical fins that form helical gas channels. The interior of the channels forms a rounded radius and opposing vertical edges of the channels include chamfers. The lower end of the helical separator element forms a concave, generally conical surface. The helical fins form a first impingement separator and the chamfers form a second vane-type impingement separator, such that particulate and liquids may be removed from the gas stream at varying flow rates and liquid/particulate densities.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 25, 2011
    Assignee: Mueller Environmental Designs, Inc.
    Inventor: Fred Mueller
  • Publication number: 20100326276
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO2.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Patent number: 7842126
    Abstract: Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO2. Both methods also take advantage of the low-regeneration temperatures of CO2-bearing mineral systems such as Na2CO3/NaHCO3 and K2CO3/KHCO3.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 30, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Robert Dilmore, Douglas Allen, Yee Soong, Sheila Hedges
  • Patent number: 7789944
    Abstract: A treatment system to efficiently remove lead from dust contained in extracted cement kiln combustion gas while reducing facility and running costs. A treatment system 1 comprising: a probe 3 for extracting a part of combustion gas, while cooling it, from a kiln exhaust gas passage, which runs from an inlet end of a cement kiln to a bottom cyclone; a classifier 5 for separating coarse powder from dust contained in the combustion gas extracted by the probe 3; a wet dust collector 6 for collecting dust from the extracted gas containing fine powder discharged from the classifier 5; and devices 12, 13 for feeding sulfurizing agent for sulfurizing lead contained in the kiln exhaust gas to the wet dust collector 6, and others. From the sulfurizing-agent feeders 12, 13 are preferably added the sulfurizing agents to a circulation liquid tank 7 or a pump 9 for circulating slurry.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: September 7, 2010
    Assignee: Taiheiyo Cement Corporation
    Inventors: Shinichiro Saito, Soichiro Okamura, Tsuyoshi Matsura
  • Publication number: 20100176064
    Abstract: Production brines are used to scrub a horizontal stack receiving exhaust from an energy source, controlling, reducing, or both noxious chemicals. Mutual remediation of flows from petroleous production cool and scrub exhausts from flares burning waste hydrocarbons, heaters lowering viscosity of crude oil, engines driving oil pumps or natural gas compressors, and the like. Resulting evaporation of production brines results in distilled water, more concentrated brines to reduce hauling, or, optionally, dehydrated dry waste minerals from the brines. Year-round operation of brine evaporation ponds is facilitated, and may be another source of process pre-heating.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 15, 2010
    Applicant: Total Water Management LLC
    Inventors: J. Clair Batty, Craig E. Cox, David A. Bell
  • Patent number: 7727307
    Abstract: A method of removing mercury from flue gases from combustion plants, such as for example power plants or waste incineration plants, is achieved in which mercury-containing flue gases are brought into contact with an adsorption reagent either directly or indirectly by being contained in an absorption reagent, whereby mercury is substantially adsorbed by the adsorption reagent during this contact. After adsorption has occurred the adsorption reagent is separated from the flue gases and subsequently from the absorption reagent and added to an aqueous solution containing an oxidizing agent, whereby the adsorbed mercury dissolves as Hg2+. The Hg2+-containing solution is subsequently separated from the adsorption agent and the Hg2+ then is removed from the solution. This method enables the mercury to be removed from flue gas in a simple and economical manner.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: June 1, 2010
    Assignee: Evonik Energy Services GmbH
    Inventor: Hermann Winkler
  • Patent number: 7575625
    Abstract: A solid is separated from a gas scrubber by collecting a solids burden not collected at a solids-collection device of a flue gas desulfurization system by adding at least one flocculant, flocculation aid or mixtures thereof, while using a separating device; wherein te flue-gas desulfurization system contains at least one absorption device disposed downstream from said solids-collection device.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: August 18, 2009
    Assignee: Ashland Licensing and Intellectual Property LLC
    Inventors: Frank Seida, Peter Graf