Including Rotation Of Liquid, Gaseous Fluid Mixture, Or Gas-liquid Mixture Through 360 Degrees In Stationary Apparatus Patents (Class 95/219)
  • Patent number: 7310992
    Abstract: The present invention provides a device for continuous real-time monitoring of ambient air. The device includes a receptacle, a liquid supply, and a pressure balancing system. The receptacle includes a gas inlet slit located such that the gas inlet slit is covered by liquid within the receptacle during use. The pressure balancing portion of the present device includes communication between a point within the receptacle above the liquid level in the receptacle, as well as a liquid inlet portion at the lowermost end of the receptacle, and an air space above a liquid supply portion and the liquid supply portion itself, respectively.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: December 25, 2007
    Assignee: Sceptor Industries, Inc.
    Inventors: Freeman Swank, Christopher Tesluk
  • Patent number: 6918949
    Abstract: A method for contacting large volumes of gas and liquid together on a microscopic scale for mass transfer or transport processes wherein the contact between liquid and gas occurs at the interfaces of a multitude of gas bubbles. Multiple porous tubes assembled in a bundle inside a pressure vessel terminate at each end in a tube sheet. A thin film helical liquid flow is introduced into the inside of each porous tube around and along its inside wall. Gas is sparged into the porous media and the liquid film so that an annular two phase flow with a uniform distribution of tiny gas bubbles results. The gas flow is segregated from the liquid flow without first passing through the porous media and through the liquid film. Nozzles at the lower end of the tubes divert liquid flow to a vessel and redirect the gas flow in a countercurrent direction.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: July 19, 2005
    Assignee: Jaeco Technology, Inc.
    Inventor: Janet K. Peters
  • Patent number: 6878187
    Abstract: A separation process, the steps that include: providing an expansion zone, flowing a gaseous fluid into and through the expansion zone, flowing a spray of liquid droplets into the expansion zone to mix with the gaseous fluid and produce nucleation sites, then expanding the flow of mixed gaseous fluid and liquid droplets to cause condensation of gas onto the liquid droplets, and then centrifuging liquid droplets into a separation layer.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: April 12, 2005
    Assignee: Energent Corporation
    Inventors: Lance Hays, Ross Brown, Ronald Franz
  • Patent number: 6830608
    Abstract: An apparatus for contacting large volumes of gas and liquid together on a microscope scale for mass transfer or transport processes wherein the contact between liquid and gas occurs at the interfaces of a multitude of gas bubbles. Multiple porous tubes assembled in a bundle inside a pressure vessel terminate at each end in a tube sheet. A thin film helical liquid flow is introduced into the inside of each porous tube around and along its inside wall. Gas is sparged into the porous media and the liquid film so that an annular two phase flow with a uniform distribution of tiny gas bubbles results. The gas flow is segregated from the liquid flow without first passing through the porous media and through the liquid film. Nozzles at the lower end of the tubes divert liquid flow to a vessel and redirect the gas flow in a countercurrent direction.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: December 14, 2004
    Assignee: Jaeco Technology, Inc.
    Inventor: Janet K. Peters
  • Patent number: 6530978
    Abstract: The present invention is a system 100 for removing particulate matter and aerosols from a gas stream generated by gasification prior to the gas stream being used as fuel in an internal combustion device or as synthesis gas for subsequent processing. The present invention consists of removing excess ash by passing the gas stream through a high temperature cyclone separator 102, cooling the gas stream, oil scrubbing the gas to further cool it and to remove particulates and some tars, passing the gas stream through one or more vortex chambers 28 to remove additional tars, passing the gas stream through a heat exchanger 104 to cool the gas, and finally passing the gas stream through a demister 106 to remove aerosols from the gas.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: March 11, 2003
    Assignee: Energy Process Technologies, Inc
    Inventors: Kevin McQuigg, William Norman Scott
  • Patent number: 6508864
    Abstract: A cyclone separator, for the separation of particulate materials from a particle-bearing gas or vapour, in which the particle-bearing gas or vapour is injected into a separating chamber (10), and the particles centrifuged to a separating chamber wall (12) of the separating chamber (10) for collection, the separating chamber wall (12) being wetted by a liquid to assist in collection of the centrifuged particles from the separating chamber wall (12), the separating chamber wall being at least partly porous, the separating chamber wall (12) being wetted by the passage of the liquid through the porous part, to provide a more uniform wetting of the separating chamber wall (12), and hence more efficient particulate collection than previously achieved by prior art methods. The cyclone separator of the invention may also be used for the separation and collection of gas or vapour-borne vapours, in place of particulates.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: January 21, 2003
    Assignee: Graseby Dynamics Limited
    Inventor: Peter John Day
  • Patent number: 6474627
    Abstract: A method and apparatus for dissolving a gas into a fluid which may contain at least one dissolved gas. The apparatus includes a conventional U-tube oxygenator which includes a U-tube member having an inlet for the introduction of the fluid and the gas to be dissolved into the fluid, and an outlet. The fluid is housed in the U-tube member. The apparatus further includes a helix-shaped bubble harvestor located proximate the bottom of the inlet side of the U-tube member. The helix-shaped bubble harvester removes fugitive (undissolved) gas bubbles from the fluid flow and returns them to the bubble swarm located above the helix-shaped bubble harvestor. The resulting fluid, which contains a high concentration of dissolved gas, exits the outlet of the U-tube member.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: November 5, 2002
    Assignee: Eco-Oxygen Technologies, LLC
    Inventor: Richard E. Speece
  • Patent number: 6468330
    Abstract: The particle separation and collection assembly uses cyclonic forces to separate and remove large particles from an airstream and concentrate small particles for sensor/detector technology. This assembly utilizes multiple mini cyclones operating in parallel to reduce the size and velocity of air through the cyclone inlets while maintaining the same fluid or flow rate as compared to one large cyclone. The multiple cyclone system can be arranged in a radial geometry or in a bipolar or uni-polar longitudinal design. The particle separator and collection assembly uses a blower or vacuum pump to draw outside gas into the cyclone particle separator assembly through radial inlets. Vacuum transfer channels, extending the entire length of the assembly, pull gas into the top of the cyclone chambers and out through the bottom apex of cyclone chamber and through the top vortex finder.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: October 22, 2002
    Assignee: Innovatek, Inc.
    Inventors: Patricia M. Irving, W. Lloyd Allen, Nathan D. Hindman, Trevor M. Moeller
  • Publication number: 20020078826
    Abstract: A cyclone separator, for the separation of particulate materials from a particle-bearing gas or vapor, in which the particle-bearing gas or vapor is injected into a separating chamber (10), and the particles centrifuged to a separating chamber wall (12) of the separating chamber (10) for collection, the separating chamber wall (12) being wetted by a liquid to assist in collection of the centrifuged particles from the separating chamber wall (12), the separating chamber wall (12) being at least partly porous, the separating chamber wall (12) being wetted by the passage of the liquid through the porous part, to provide a more uniform wetting of the separating chamber wall (12), and hence more efficient particulate collection than previously achieved by prior art methods. The cyclone separator of the invention may also be used for the separation and collection of gas or vapor-born vapors, in place of particulates.
    Type: Application
    Filed: November 14, 2001
    Publication date: June 27, 2002
    Inventor: Peter John Day
  • Publication number: 20020053287
    Abstract: A method for entraining and mixing gas with liquids within a conduit or drop structure, comprising the channeling of one or more liquid flows into spiral flows of predetermined radius (radii), reducing the predetermined radius (radii) to increase the centrifugal forces acting upon the spiral flow(s) as the spiral flow(s) enter the conduit, and allowing gas access to the conduit to mix with and entrain within the spiral flow within the conduit or drop structure. The method can facilitate the mixing of gas with one or more fluid flows and/or reduce the release of gas emissions from the fluid(s) into the surrounding environment.
    Type: Application
    Filed: January 8, 2002
    Publication date: May 9, 2002
    Inventor: Eugene M. Natarius
  • Patent number: 6322617
    Abstract: A scrubbing apparatus for separating gaseous or particulate contents, especially from flue gas, using a plurality of spin spray nozzles arranged such that adjacent spray nozzles have a different spin. Double spin spray nozzles can be used that produce oppositely aimed spray jets of different spin.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: November 27, 2001
    Assignees: Lechler GmbH & Co. KG, Dieter Wurz
    Inventors: Dieter Wurz, Lothar Bendig, Juergen Speier
  • Patent number: 6248156
    Abstract: A particulate capture system has an air circulating chamber that separates a first portion of particulates trapped within an air stream. The particulate capture system also has a water injection chamber that separates a second portion of particulates trapped within the air stream. The first portion of particulates is separated via circulating air flow. The second portion of particulates is separated via encapsulating the particulates in water and returning the encapsulated particulates to a cooling chamber where the particulates are blended with a bulk product being processed within the cooling chamber prior to collection of the bulk product.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: June 19, 2001
    Assignee: Scott Equipment Company
    Inventor: Richard V. Lucas
  • Patent number: 6221133
    Abstract: The invention provides a cellular packing including a vapor/liquid separation device that can be stacked vertically with minimum wasted space. The packing uses static vanes in each cell to direct the liquid component of a vapor/liquid mixture to exit slots in a first cell and a recirculation path for the liquid to be contacted with vapor again in a second cell located below the first.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: April 24, 2001
    Assignee: Norton Chemical Process Products Corporation
    Inventor: Frank D. Moore
  • Patent number: 6217636
    Abstract: A transpirated wall aerosol collection system includes a collector operable to receive a gas flow containing particulate matter. The system also includes a porous wall having a first surface and a second surface. The porous wall is operable to transpire a liquid from the first surface to the second surface. Particulate matter contained in the gas flow is deposited in the liquid on the second surface of the porous wall. A virtual impactor may be used with the system for concentrating the particulate matter contained in the gas flow.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: April 17, 2001
    Assignee: The Texas A&M University System
    Inventor: Andrew R. McFarland
  • Patent number: 6176898
    Abstract: An improved process and system for collecting and handling dust in a papermaking machine environment wherein dust-laden air is drawn into and moves along an elongated collector by way of a vacuum-generating source connected to the collector involves the introduction of water into the collector so that the introduced water becomes entrained by the dust-laden air moving through the collector and wet-scrubs the dust-laden air upon entering the collector. With the dust being wet-scrubbed upon exiting the collector, the likelihood of ductwork fouling is substantially eliminated, and the risk of fire in the ductwork downstream of the collector is appreciably reduced.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: January 23, 2001
    Assignee: Valmet, Inc.
    Inventors: Kevin Courtney, Jerry Klymenko, Peter Kevin Wicklund, Philip Ponka
  • Patent number: 6156102
    Abstract: A process of separating water from ambient air involves a liquid desiccant to first withdraw water from air and treatment of the liquid desiccant to produce water and regenerated desiccant. Water lean air is released to the atmosphere. Heat generated in the process is recycled. The drying capacity, or volume of water produced, of the system for a given energy input is favored over the production of dried air.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: December 5, 2000
    Assignee: Fantom Technologies Inc.
    Inventors: Wayne Ernest Conrad, Helmut Gerhard Conrad
  • Patent number: 6149715
    Abstract: The invention relates to a method according to which the wet scrubbing of a gas flow is performed in at least three, advantageously six successive steps or phases, and the droplet separation of the scrubbed gases is carried out in a uniform cyclone-like droplet separator composed of several nested cylinders. The invention also relates to a method for momentarily bypassing, during a capacity rise, a scrubbing phase that causes pressure loss. As a result, there is obtained a clean and dropless gas that falls below the allowed dust content limits and can thus be either conducted to combustion or discharged in the open air. The invention also relates to an apparatus, a multiphase scrubber, for realizing the method. The invention is particularly suited to be used for scrubbing hot furnace gases from closed reduction furnaces, where said furnace gases contain easily inflammable components.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: November 21, 2000
    Assignee: Outokumpu OYJ
    Inventors: Veli Keinanen, Launo Lilja, Pekka Niemela, Janne Ollila
  • Patent number: 6102990
    Abstract: A multiphase scrubber for the wet scrubbing of gases in several different phases comprises at least three separate basic scrubbing units so that the scrubbing of the gas is carried out in at least three, advantageously six, successive steps. The droplet separation of the scrubbed gases is carried out in a uniform cyclone-like droplet separator composed of several nested cylinders. A clean dropless gas contains a dust content below the acceptable limit. The scrubber is suited for scrubbing hot furnace gases from closed reduction furnaces.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: August 15, 2000
    Assignee: Outokumpu Oyj
    Inventors: Veli Keinanen, Launo Lilja, Pekka Niemela, Janne Ollila
  • Patent number: 6042636
    Abstract: A method and apparatus of cooling incinerator exhaust gas for a cleaning treatment of high temperature exhaust gas discharged from an incinerator of refuse and/or waste in a post-step are provided. A spray cooling chamber includes a chamber having a lower end portion formed into a nearly cylindrical shape of an inverted conical shape, a gas distribution chamber equipped with a revolving blade, arranged at an upstream side of the chamber, a sprayer of a cooling liquid arranged at central upper portion of the chamber, a dust exhaust port arranged at the lower end portion of the chamber, and an exhaust pipe arranged on the chamber. Waste heat recovery from exhaust gas is limited to a temperature range capable of suppressing generation of dioxins, and high temperature exhaust gas is rapidly cooled, particularly at a temperature drop rate such that the vicinity of 300.degree. C. is dropped in a short time within 1 second, so that exhaust concentration of dioxins from an incinerator plant can be decreased to 0.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: March 28, 2000
    Assignee: Ohkawara Kakohki Co., Ltd.
    Inventors: Shizuo Aishima, Takahito Goshi, Masaaki Ohkawara, Toshiyuki Tanaka, Takashi Itoh, Kazukuni Furukawa, Masashi Fujii, Gentaro Nemoto
  • Patent number: 6004364
    Abstract: The present invention relates to a process and a device for the separation and purification of gas from a fiber suspension, especially residual gas after ozone delignification or pulp suspension, wherein the suspension together with the gas is introduced into a cyclone (2) or similar in which essential separation of suspension takes place, after which the essentially gas-free suspension is drawn off downwards and the gas (5) containing residual fiber and/or other impurities is drawn off upwards, the gas stream (5), before it is conducted away, being led through a liquid bath for separation of residual fibers and/or other impurities from the gas stream.
    Type: Grant
    Filed: February 7, 1996
    Date of Patent: December 21, 1999
    Assignee: Kamyr Aktiebolag
    Inventors: Rolf Ekholm, Ulf Jansson
  • Patent number: 5972171
    Abstract: De-entrainment devices are provided for separating an entrained liquid from a vapor stream exiting a flash zone in a separation column. Methods for utilizing the de-entrainment devices are also provided. In one embodiment, the de-entrainment device of the present invention is embodied in a de-entrainment tray that has a tray deck and a plurality of risers extending vertically up from the tray deck. The risers are provided with devices for imparting rotational movement to the fluid stream, which have the vapor stream and entrained liquid, entering the riser. The rotational movement imparted to the fluid stream causes the liquid to separate from the vapor stream and to flow upward along the riser walls. The de-entrained liquid is then transported from above the separation tray back into the flash zone by way of a liquid downcomer. The vapor stream separates from the liquid within the riser and flows out of the riser upward through the column.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: October 26, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Mark Sheldon Ross, Berne K. Stober, John Scott Buchanan
  • Patent number: 5866046
    Abstract: This invention relates to a method for manufacturing ultra-fine water droplets containing a large amount of anions and in the present invention, there is provided a permeating cylindrical striking plate for manufacturing ultra-fine water droplets at an intermediate position between the cylindrical main body and the water atomizing and injecting pipe, wherein the pressurized water is atomized and injected from the water atomizing and injecting pipe toward the striking plate, the obtained ultra-fine water droplets are fed out of the permeating holes at the striking plate and fed out of the main body by the air moving in the main body.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: February 2, 1999
    Assignee: Cosmo EC Co., Ltd.
    Inventor: Shigeru Tozawa
  • Patent number: 5861316
    Abstract: A continuous emission monitoring system is disclosed for detecting toxic substances of various types in either stack gas or ambient air. Particular systems are illustrated for monitoring lewisite and chromium(VI). Each system employs a gas sampler that utilizes a high-volume, wet cyclone concentrator unit which scrubs the contaminants from the gas into water or another suitable scrubbing solution. In-line chemical processing of the contaminated sample thus obtained is accomplished either within the sampling unit or by an external chemistry processing module. After processing to provide an analyte in the sample indicative of the presence of a predetermined contaminant, the sample stream is delivered to an ion chromatograph or other analyzer to determine the presence and quantity of the analyte and indicate whether a danger level has been reached. This provides monitoring on an essentially real-time or near real-time basis.
    Type: Grant
    Filed: August 20, 1996
    Date of Patent: January 19, 1999
    Assignee: Midwest Research Institute
    Inventors: Brian R. Cage, Paul G. Gorman, John E. Going, Michael J. Thornburg, Daniel R. Soderberg
  • Patent number: 5693224
    Abstract: Sweetening of hydrogen-sulfide polluted liquids such as water and those whose viscosity is not substantially greater, is accomplished in upright tanks of constant cross-section, which are substantially conventional except for man-way provisions which permit clean-out and replacement of contents. Each tank, which has a liquid inlet provision near its bottom, is divided by its contents into three sections: a lowermost turbulence-eliminating section, an intermediate reacting section, and an uppermost tranquil purified storage section. Increase in capacity to fill a constant demand is attained by simply increasing the depth of the reacting section, to the lessening of the purified reserve.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: December 2, 1997
    Assignee: Gas Sweetener Associates, Inc.
    Inventor: Richard B. Fox
  • Patent number: 5683493
    Abstract: A fluid separation packing that is useful as a packing material for distillation and fractionation columns or towers which provides for co-current liquid and vapor contact during the countercurrent separation process. The packing comprises a number of connected packing elements, suitably in the form of connected octagons, which have continuous side walls with an upper end and a lower end which terminates in a base with a vapor opening and a vapor tab above the opening. The side walls which define openings between adjacent packing elements are connected to one another to define a contacting volume above the base and there is a liquid slit on the side wall. The packing is also provided with liquid downcomers which have side walls with their upper portions within the openings between adjacent packing elements, and their lower portions extending below the packing element base. Downcomer ports through which liquid can flow are located proximate to the lower ends of the downcomers.
    Type: Grant
    Filed: July 19, 1996
    Date of Patent: November 4, 1997
    Inventor: Berne K. Stober
  • Patent number: 5584911
    Abstract: A system is provided for recovering volatile-liquid vapor from an air-volatile liquid vapor mixture. The system includes a reaction vessel having a bed of adsorbent for adsorbing volatile liquid vapor and producing relatively volatile liquid vapor-free air. The system further includes a liquid seal vacuum pump for regenerating the adsorbent, a first conduit for circulating the air-volatile liquid vapor mixture through the system and a second conduit for circulating seal liquid to the vacuum pump. A cyclonic separator separates the seal liquid from the air-volatile liquid vapor mixture produced during bed regeneration. A mechanism is also provided for removing the volatile liquid vapor from the air-volatile liquid vapor mixture separated from the seal liquid. A method of recovering volatile liquid vapor from an air-volatile liquid vapor mixture is also disclosed.
    Type: Grant
    Filed: June 15, 1995
    Date of Patent: December 17, 1996
    Assignee: Jordan Holding Company
    Inventor: Edward Menzenski
  • Patent number: 5518701
    Abstract: The invention relates to a process and a corresponding plant for the purification of gases, in particular flue gases, using a foam-forming reaction medium with which dirty gas is contacted in a reaction chamber, in which the foam is broken after the reaction between dirty gas and the reaction medium, the reaction medium recovered by the breaking and the settling sludge are separately collected and the purified gas is withdrawn. This invention is intended to enable the substances removed from the gases to be purified to be separated, when dirty gas having a temperature of <60.degree. C.
    Type: Grant
    Filed: July 7, 1993
    Date of Patent: May 21, 1996
    Inventor: Herman Berthold
  • Patent number: 5413626
    Abstract: For their wet purification, gases flowing in a line are sprayed with scrubbing liquor, the resulting mixture of gas and liquid is passed through a cyclone separator. The gas is initially sprayed in a pre-scrubbing line and the gas which contains scrubbing liquor is subsequently conducted through a substantially horizontal accelerating line having at its entrance a cross-sectional area which is 1.5 to 8 times larger than the cross-sectional area at its exit. The exit of the accelerating line communicates with the cyclone separator. Purified gas is withdrawn from the cyclone separator.
    Type: Grant
    Filed: October 19, 1993
    Date of Patent: May 9, 1995
    Assignee: Norddeutsche Affinerie Aktiengesellschaft
    Inventor: Arno Bartsch
  • Patent number: 5378265
    Abstract: Air containing foreign particles is admitted into a cylindrical portable housing at the input end and cleaned air is discharged from the outlet end. A liquid supply has an open bath at the bottom of the housing. A source of liquid is controlled to supply liquid to the bath upon the level of the liquid falling below a predetermined magnitude. A spray sprays liquid from the bath into the housing, whereby foreign particles in the air entering the housing are coated with the liquid. Air entering the housing throws the liquid-coated particles onto a helical vane affixed in the housing. The particles are dispersed by the vane and helical ribbons mounted on the vane. A rotary vane has a plurality of blades mounted for rotation within the helical ribbons, and the blades collect and coalesce liquid mists on their surfaces.
    Type: Grant
    Filed: August 31, 1993
    Date of Patent: January 3, 1995
    Inventor: Robert L. Pearl
  • Patent number: 5376166
    Abstract: A smoke stack, which discharges contaminated gases, is provided with a plenum chamber, at its end, formed of one or more stacked modules. Each module includes a hollow cylindrical housing, from which protrudes, in various radial directions, a plurality of ducts, each being provided with a nozzle at its end. The nozzle has a central passageway through which a portion of the gases pass and is discharged into the atmosphere, and a second passageway which directs the air around the discharging gases for imparting a swirling action to the commingled gases. An ultra low volume of treatment fluid, usually a liquid chemical, is progressively discharged into the central passageway so that fog is generated as the gases and liquid emerge. Relief valves for the gas discharge into this fog. An accumulator tank at the top of a chamber or a metering pump supplies the liquid.
    Type: Grant
    Filed: August 16, 1993
    Date of Patent: December 27, 1994
    Assignee: Lowndes Engineering Co., Inc.
    Inventors: Craig O. Hoffmann, David W. Waldron, Jr.
  • Patent number: 5340382
    Abstract: Acid gas (a mixture of carbon dioxide and hydrogen sulfide) is absorbed by produced water from hydrocarbon wells. The acid gas is absorbed in the produced water in a static mixer. The time from the entry of the produced water into the static mixer to its exit is less than ten seconds. The produced water with the absorbed acid gas is pressurized to flow through a pipeline to an injection pump. The injection pump injects the produced water with the absorbed acid gas into injection wells which return the produced water into disposal strata. The produced water with the acid gas is maintained at a pressure higher than the pressure at the exit of the static mixer.
    Type: Grant
    Filed: July 8, 1993
    Date of Patent: August 23, 1994
    Inventor: Thomas L. Beard
  • Patent number: 5273721
    Abstract: A flue gas scrubber for removing sulfur from flue gas. This scrubber, whether a horizontal or a vertical scrubber and whether a dry or a semi-dry scrubber, incorporates a recycle line that separates heavier dry solid particles from the finer particles still entrained within the cleaned flue gas. This recycle conduit then delivers these removed dry solid particles back to the scrubber for re-injection therein so as to reduce the drying time of the reagent slurry sprayed within the scrubber. Such drying time is reduced by the recycle of these dry solids because of the increased surface area overwhich the reagent is now sprayed.
    Type: Grant
    Filed: July 8, 1992
    Date of Patent: December 28, 1993
    Assignee: The Babcock & Wilcox Company
    Inventor: Rae A. U. Hallstrom