Moving Bed Patents (Class 95/275)
  • Patent number: 8845792
    Abstract: Disclosed are embodiments for methods and devices for filtering undesired particles from a medium by bonding the undesired particles to attachment particles. In some embodiments, the methods include receiving a plurality of attachment particles into a volume, where the volume contains a plurality of undesired particles and the medium. The method may also include contacting the plurality of attachment particles and the plurality of undesired particles contained in the medium, resulting in formation of bonded particles in the medium. Contacting may result in collisions, causing bonding between some undesired particles and some attachment particles. Some embodiments of the method also include removing at least a portion of the medium and bonded particles from the volume through a filter coupled to the volume with an exhaust, the filter configured to capture the bonded particles while allowing the medium to pass through.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 30, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Manibrata Paul
  • Patent number: 8632623
    Abstract: A purification method comprises directing a system having a gas phase component and a contaminant through a filter including an aerogel material, e.g., hydrophobic silica-based aerogel particles. A filter for purifying a gas phase system comprises an aerogel material in an amount sufficient to remove at least a portion of a contaminant present in the gas phase system. In preferred examples, the filter is a fluidized bed. In further examples, the filter is a packed bed.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: January 21, 2014
    Assignee: New Jersey Institute of Technology
    Inventors: Robert Pferrer, Jose A. Quevedo
  • Patent number: 8518165
    Abstract: An exhaust-gas treating apparatus, which includes an adsorption tower for removing various harmful substances in an exhaust gas using an adsorbent, a regeneration tower for releasing adsorbed substances from the adsorbent, a first transfer passage for transferring the adsorbent from the adsorption tower to the regeneration tower, a second transfer passage for transferring the adsorbent from the regeneration tower to the adsorption tower, a lock hopper connected to one end of the regeneration tower on a higher differential pressure side of a first differential pressure between an inside of the regeneration tower and an inside of the first transfer passage and a second differential pressure between the inside of the regeneration tower and an inside of the second transfer passage to thereby secure gas-tightness, a sealing unit connected to the other end of the regeneration tower on a lower differential pressure side to thereby secure gas-tightness, and an adjusting unit for maintaining the differential pressure
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 27, 2013
    Assignee: J—Power Entech, Inc.
    Inventors: Kuninori Furuyama, Masahiro Miya, Ryo Suzuki
  • Patent number: 8500888
    Abstract: A regeneration tower including a regeneration tower main body having a long trunk, and desorbed gas discharge passages through which a desorbed gas is discharged. The regeneration tower main body is configured so that a heating unit that heats an adsorbent, a separation part that separates desorbable substances as a desorbed gas from the heated adsorbent, and a cooling unit that cools the adsorbent from which the desorbable substances have been desorbed by heating are communicatively disposed in one direction and the heating unit and the cooling unit have approximately the same sectional outer diameter.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 6, 2013
    Assignee: J-Power EnTech, Inc.
    Inventors: Kuninori Furuyama, Masahiro Miya, Ryo Suzuki
  • Patent number: 8268271
    Abstract: The present invention relates generally to a method for removing contaminants from a fluid stream and chemically upgrading the stream at the same time. More particularly, the invention relates to a catalytic moving bed filter for removing contaminants from a gas or vapor stream and to compositions comprising both moving bed filter materials and one or more catalysts intimately admixed therewith.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: September 18, 2012
    Assignees: Iowa State University Research Foundation, Inc., Phillips 66 Company
    Inventors: Daren E. Daugaard, Samuel T. Jones
  • Patent number: 7815717
    Abstract: There is provided an improved method and apparatus for renewal of a plurality of faces across which gas enters a panel of a granular material. The panel is for contacting the gas and granular material with each other to effect physical or chemical treatment of at least one of them (for example, to filter dust from a gas or to remove a constituent from a gas by means of adsorption or absorption). In the panel, gas-entry faces are transversely disposed, upwardly spaced, and held in place by supporting members. These supporting members are subjected to a sharp motion in a direction toward the gas-entry faces, causing body movement of the granular material toward the faces, thereby causing moieties of granular material to fall away therefrom. Removal of these moieties and exposure of previously underlying granular material renew the faces. Flat-plate louvers are preferred supporting members.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: October 19, 2010
    Inventor: Arthur M. Squires
  • Patent number: 7727298
    Abstract: A dust filter has adjustable sub-blades between blades. By adjusting the blades distanced and the sub-blades' positions and angles, stagnation area of filtration material on the blades are removed. Furthermore, space in the dust filter is fully used. Thus, a filtering efficiency is improved.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: June 1, 2010
    Assignee: Atomic Energy Council
    Inventors: Jiri Smid, Shu-San Hsiau, Chin-Ching Tzeng, Yi-Shun Chen, Chia-Ren Hsu, Yuh-Jenq Yu
  • Publication number: 20100071554
    Abstract: A purification method comprises directing a system having a gas phase component and a contaminant through a filter including an aerogel material, e.g., hydrophobic silica-based aerogel particles. A filter for purifying a gas phase system comprises an aerogel material in an amount sufficient to remove at least a portion of a contaminant present in the gas phase system. In preferred examples, the filter is a fluidized bed. In further examples, the filter is a packed bed.
    Type: Application
    Filed: May 1, 2009
    Publication date: March 25, 2010
    Applicant: New Jersey Institute of Technology
    Inventors: Robert Pfeffer, Jose A. Quevedo
  • Patent number: 7662217
    Abstract: A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: February 16, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Barry H. O'Brien, Paul D. Ritter
  • Patent number: 7540891
    Abstract: A system and method for removal of a toxic gas from a powder contaminated with the toxic gas. The system comprises: a source of the contaminated powder; a stripper assembly for stripping at least part of the toxic gas from a batch load of the contaminated powder; connecting means for fluidly connecting the source with the stripper assembly for transporting the contaminated powder from the source to the stripper assembly. The stripper assembly may comprise two or more stripper vessels, and the connecting means is arranged to selectively connect the source to one or more of the stripper vessels. Gravity-driven transport of the contaminated powder from the source of the contaminated powder to the stripper assembly may be established. The source may comprise a gasifier and a depressurising chamber.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: June 2, 2009
    Assignee: Shell Oil Company
    Inventors: Isaac Cornelis Van Den Born, Johannes Gerardus Maria Schilder
  • Patent number: 7309384
    Abstract: A method and apparatus for filtering gas (58) with a moving granular filter bed (48) involves moving a mass of particulate filter material (48) downwardly through a filter compartment (35); tangentially introducing gas into the compartment (54) to move in a cyclonic path downwardly around the moving filter material (48); diverting the cyclonic path (58) to a vertical path (62) to cause the gas to directly interface with the particulate filter material (48); thence causing the gas to move upwardly through the filter material (48) through a screened partition (24, 32) into a static upper compartment (22) of a filter compartment for exodus (56) of the gas which has passed through the particulate filter material (48).
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: December 18, 2007
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert C. Brown, Corey Wistrom, Jerod L. Smeenk
  • Patent number: 7077888
    Abstract: The invention relates to a device for separating dust from flue gases from combustion plants, especially solid fuel combustion plants, comprising at least one dust filter via which the flue gases are guided, and by means of which the dust from the flue gases can be filtered out as it passes through the dust filter. In order to produce a device which separates dust in a highly efficient manner and which can be operated in a highly reliable manner and be used to heat combustion air for the combustion plant, the at least one dust filter is embodied as a bulk material filter in whose bulk material heat from the flue gases can be collected when the bulk material is cross-flown by the flue gases and by means of whose bulk material heat collected from the flue gases when the combustion air of the combustion plant flows through the bulk material filter can be given off to said combustion air.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: July 18, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harald Dichtl, Thomas Hagen, Roland Klaus, Jörg Lengert
  • Patent number: 6783572
    Abstract: There is provided an improved panel-bed method and apparatus for achieving an intimate contact of a gas and a loose granular solid material (e.g., for filtering dust from the gas). A bed of the material is housed in a tall, narrow panel, across which gas moves in a substantially horizontal direction. Gas-entry portions of the granular bed are supported by louvers that slope inwardly and upwardly from nearby their outer edges. The total area of the gas-entry faces presented by these gas-entry portions is greater than the projected vertical frontal area of the panel. After an interval of the contact, gas-entry faces of the granular material are renewed by causing en masse displacement of the material respecting the supporting louvers, the displacement producing a spill of a surface layer from each gas-entry face. This displacement is preferably accomplished by causing louvers to move sharply upward (e.g., as may be caused by an upward blow of a hammer).
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: August 31, 2004
    Inventor: Arthur M. Squires
  • Publication number: 20040139858
    Abstract: Inorganic, porous particles attract oleo material within a flow of fluid such as a liquid or gas. The particles can be arranged into a packed bed to filter the oleo material from the fluid flow, which can agglomerate in the pores of the filtering particles. Agglomeration of the filtrate within the pores of the particles does not impede the flow of fluid through the interstices of bed of particle and, hence, enhances the filtering capacity of the particles. Furthermore, the inorganic particles are re-usable, in that they can be subjected to harsh filtrate-separation techniques, e.g., heat treatment, solvent extraction and detergent washing, yet retain their desired properties. Methods of making and using these particles also are described herein. Inorganic, porous particles filter a substance or substances from a flow of fluid such as a gas. The particles can be arranged into a bed to filter a substance (filtrate substance) from a fluid.
    Type: Application
    Filed: October 22, 2003
    Publication date: July 22, 2004
    Applicant: PHILLIPS PLASTICS CORPORATION
    Inventors: Majid Entezarian, Thomas M. Fitch, Richard Smasal, James R. Johnson
  • Publication number: 20040011203
    Abstract: Inorganic, porous particles filter a substance or substances from a flow of fluid such as a gas. The particles can be arranged into a bed to filter a substance (filtrate substance) from a fluid. The filtrate substance can collect on or within the pores of the inorganic particles. Collection of the filtrate substance within the pores of the particles rather than within the interstices of the bed enhances the filtering capacity and does not impede the flow of fluid through the bed of particles. Furthermore, the inorganic particles are re-usable, in that they can be subjected to harsh filtrate-separation techniques, e.g., heat treatment, solvent extraction, detergent washing, and centrifugal separation, yet retain their desired properties.
    Type: Application
    Filed: March 14, 2003
    Publication date: January 22, 2004
    Inventors: Thomas M Fitch, Majid Entezarian, James R Johnson
  • Publication number: 20040000235
    Abstract: In the dry separation method, an object to be separated is charged into a gas-solid fluidized bed of powder to conduct continuous separation of components utilizing a bulk density of the gas-solid fluidized bed.
    Type: Application
    Filed: April 16, 2003
    Publication date: January 1, 2004
    Applicant: OKAYAMA UNIVERSITY
    Inventors: Jun Oshitani, Zennosuke Tanaka
  • Patent number: 6440198
    Abstract: A moving granular bed filter for removing contaminants from a gas or vapor stream employs a quantity of granular media that is passed through a vessel while the contaminant-laden gas stream is passed through the granular media to remove at least a portion of the contaminants from the gas stream and into the granular media. The vessel includes a media inlet that extends between a pair of opposite regions of the vessel and delivers the granular media into the interior of the vessel such that the granular media forms a freely-formed filtration pile within the interior of the vessel to define first and second chambers above the upper surface of the pile and on opposite sides of the media inlet. In one embodiment, the media inlet is disposed at the lower end of a media delivery channel that extends downwardly into the interior of the vessel and which supplies the granular media to the media inlet.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: August 27, 2002
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Wen-Ching Yang, Richard A. Newby
  • Patent number: 6368389
    Abstract: Phthalic acid anhydride is recovered from a gas stream containing phthalic acid anhydride vapors by passing the gas stream upwardly through a vertical tube so that the gases expand at the orifice at the upper end of the tube and mix with granules entrained above the tube by fluidizing gas of a fluidized bed of phthalic acid anhydride granules around the tube. The tube, kept free from phthalic acid anhydride granules and the fluidized bed, is indirectly cooled.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: April 9, 2002
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Gerhard Birke, Martin Hirsch, Volker Franz
  • Patent number: 6117672
    Abstract: A system for removing particulate, sulfur dioxide, nitrogenous oxides and other condensables from the flue gas of a coal, lignite, or other solid fuel combustor. The system can combine biomass filtration, anaerobic digestion, steam absorption refrigeration, and heat exchangers to minimize parasitic energy consumption, solid and liquid waste disposal and interference with combustion efficiency, while achieving near total reduction of contaminants without regard to sulfur or ash content of fuel. Gases at the exit of a multiclone of a fuel-combustor enter a waste heat boiler, generating low pressure steam that drives a steam absorption chiller. The flue gas which still contains small particulate material pass through a moving belt system conveying a mat of chopped biomass that can be impregnated with bacteria that feed on nitrogenous oxides. The mat is sufficiently thick and moist to entrap the remaining solids and smoke in the exhaust stream.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: September 12, 2000
    Inventor: Leon Breckenridge
  • Patent number: 5730781
    Abstract: According to the invention, regeneration is performed by filtering and by regenerating simultaneously the used absorbent; two stages are carried out for the regeneration: one, which is a rough stage, is performed in the presence of a regeneration gas; the other, a free stage, is performed in the presence of a fresh regeneration gas.
    Type: Grant
    Filed: February 13, 1996
    Date of Patent: March 24, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Gerard Martin, Luc Nougier, Jean-Christophe Dolignier
  • Patent number: 5607649
    Abstract: An apparatus for processing a particulate material containing an inflammable component, such as ethanol or another solvent, comprises a fluidized bed chamber with a perforated bed plate arranged therein. The particulate material may be fluidized on the bed plate by supplying fluidizing air upwardly through perforations in the bed plate. In order to reduce the risk of explosion in the fluidizing air after its passage through the fluidized bed formed on the bed plate, dilution gas is fed into the fluidized bed chamber. The dilution gas is introduced into the fluidized bed chamber at least at one position spaced from the side walls of the chamber and preferably located centrally within the fluidized bed chamber in order to obtain a substantially uniform mixing of the dilution gas with the fluidizing air including the inflammable component immediately above the fluidized bed. The explosion safe gas mixture may be discharged from the upper part of the processing chamber.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: March 4, 1997
    Assignee: Niro Holding A/S
    Inventor: Ove Hansen
  • Patent number: 5527514
    Abstract: A desulfurizing and denitrating apparatus wherein an inner space of a tower body, which has an introduction port for a gas to be processed and a processed gas discharge port formed respectively in opposite side walls, is partitioned in a direction from the side wall having the processed gas introduction port toward the side wall having the processed gas discharge port by an inlet louver, a perforated plate and an outlet louver all extending vertically parallel to each other, a constant-rate discharging device for setting a moving speed of a carbon-base adsorbent in a small chamber defined between the inlet louver and the perforated plate and a constant-rate discharging device for setting a moving speed of a carbon-base adsorbent in a large chamber defined between the perforated plate and the outlet louver are provided, the moving speed of the carbon-base adsorbent in the small chamber is set to be 2 to 4 times greater than an average moving speed, and the distance from the inlet louver to the perforated plate
    Type: Grant
    Filed: October 7, 1994
    Date of Patent: June 18, 1996
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventors: Teruo Watanabe, Hiromi Tanaka, Kouji Kobayashi
  • Patent number: 5330726
    Abstract: A device for separating undesired exhaust gas components from a fluid comprises a reactor with a reaction chamber and having a top and a bottom. The top has a device for introducing a granular adsorption medium. The bottom comprises first and second oppositely slanted sidewalls arranged parallel to one another and forming between them a gutter open in an upward direction. Sections of the gutter form removal funnels with a funnel mouth for removing the granular adsorption medium. The bottom further has fluid inflow openings for admitting the fluid into the reaction chamber, whereby the funnel mouths and the fluid inflow openings are arranged alternatingly in the gutters. The funnel mouths are arranged to form a grid structure. The bottom also has distributing elements for covering the fluid inflow openings. The distributing elements have a pyramid, a cone, a pyramid sector, or a cone sector shape.
    Type: Grant
    Filed: June 25, 1992
    Date of Patent: July 19, 1994
    Assignee: Steag Aktiengesellschaft
    Inventors: Hermann Bruggendick, Karl Klinginger