Voltage Sensed Patents (Class 95/7)
  • Patent number: 10944334
    Abstract: A switching power supply (switched-mode power device) includes a rectifier for a mains connection and for rectifying a three-phase AC voltage, a first converter and a second converter, the input voltage of which forms an intermediate circuit voltage, where the first converter regulates the intermediate circuit voltage such that the voltage substantially corresponds to a predefinable output voltage of the second converter multiplied by a load-independent transformation ratio on operation of the second converter with a resonant frequency, where upon forced reduction of the output voltage from the second converter, the first converter can set an, on average, sufficiently low intermediate circuit voltage such that the second converter can be operated substantially with the resonant frequency for a load-independent transformation ratio, where a signal for closed-loop control of the first converter stage can be derived from voltage and/or current information from the second converter.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: March 9, 2021
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stefan Schulz, Janusz Dyszewski, Stefan Reschenauer
  • Patent number: 10886861
    Abstract: The present disclosure relates to system(s) and method(s) for generating a controlled static electricity in a propensity medium. The system receives an input signal indicating a target static electricity to be generated in the propensity medium, and a DC voltage from a power source. Furthermore, the system converts the DC voltage into an AC voltage. Furthermore, the system multiplies the AC voltage using a voltage multiplier to generate a static electricity. The voltage multiplier comprises a plurality of a set of capacitors and diodes. The system further measures the static electricity. Further, the system compares the static electricity and the target static electricity. Based on the comparison, the system configures the voltage multiplier by modifying at least one set of capacitors and diodes. Further, the system generates the controlled static electricity in the propensity medium based on the configuration of the voltage multiplier.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 5, 2021
    Inventor: Gandhi Karuna K T
  • Publication number: 20150082980
    Abstract: An air cleaning apparatus includes ion generation electrode, a collecting electrode, and a support portion. The ion generation electrode is configured to apply a high-voltage to thereby form a high-voltage electric field between the collecting electrode and the ion generation electrode. A passage is formed between the ion generation electrode and the collecting electrode along the high-voltage electric field direction. The support portion is configured to provide electrical isolation and mechanical support for the ion generation electrode and the collecting electrode. A surface of the support portion between the ion generation electrode and the collecting electrode comprises a surface coating layer configured to resist ion bombardment and the accidental arcing. A transformer frequency adjusting system includes a frequency storage cell, a control module, and a drive module, and can work with the air cleaning apparatus, alone, or with other apparatuses.
    Type: Application
    Filed: November 27, 2014
    Publication date: March 26, 2015
    Inventors: YIGANG LIU, HONGYU RAN, XIANGHUI GAO
  • Publication number: 20140096680
    Abstract: An air filtration system includes a frame directing an airflow through the air filtration system and a power supply. An ionization array is located in the frame across the airflow and connected to the power supply. The power supply provides a first voltage to the ionization array. A field wire is located in the frame downstream from the ionization array and is energized to a second voltage only by an electrical energy discharge from the ionization array. A method of operating an electrically enhanced air filtration system includes energizing an ionization array, located across an airflow through the air filtration system, to a first voltage via electrical power supplied by a power supply. Electrical energy is discharged from the ionization array into the airflow. A field wire downstream of the ionization array is energized to a second voltage only by the discharge of electrical energy from the ionization array.
    Type: Application
    Filed: May 14, 2012
    Publication date: April 10, 2014
    Applicant: CARRIER CORPORATION
    Inventors: Alan Ackley, Maurice L. Frappier, Ronald L. Bowman
  • Patent number: 8623116
    Abstract: Provided is a method of controlling the operation of an electrostatic precipitator (6) using a control strategy for a power to be applied between at least one collecting electrode (28) and at least one discharge electrode (26). The control strategy is directed to controlling, directly or indirectly, a power range and/or a power ramping rate. As such, the temperature of a process gas is measured. When the control strategy controls a power range, a power range is selected based on the measured temperature, an upper limit value of the power range being lower at a high temperature of said process gas, than at a low temperature. When the control strategy controls a power ramping rate, a power ramping rate is selected based on the measured temperature, a power ramping rate being lower at a high process gas temperature, than at a low process gas temperature.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 7, 2014
    Assignee: ALSTOM Technology Ltd
    Inventor: Anders Nils Gustav Karlsson
  • Publication number: 20130269518
    Abstract: A device for purifying air from non-desired gases and particles, in the case of nuclear power plants from radiating particles and gaseous iodine, and for extermination of microorganisms and removal from the air. The device includes a purifying chamber through which the air to be purified is arranged to flow. In the structurally grounded purifying chamber ionized air (1) is led to a water dust or vapor which can be oxidized with hydrogen peroxide (6) and by increasing the voltage level of the ionization to produce ozone and to be led further to high voltage operated ion blast tips (8) producing a continuous ion jet, which is directed onto collecting surfaces (9) and taking with it droplets, particulate materials and gaseous components connected to them. The volume of the air to be purified determines the shape and volume of the purifying device.
    Type: Application
    Filed: July 14, 2011
    Publication date: October 17, 2013
    Applicant: AAVI TECHNOLOGIES LTD
    Inventor: Veikko Ilmari Ilmasti
  • Publication number: 20130255482
    Abstract: Technologies are presented for applying electrical energy to a combustion reaction to produce agglomerated combustion particulates. For example, a system may include: one or more electrodes configured to apply electrical energy to a combustion reaction; a combustion zone configured to support the combustion reaction of a fuel at a fuel source; and an electrical power source operatively coupled to the one or more electrodes and configured to apply electrical energy to the combustion reaction. The combustion reaction is controlled to produce a distribution of agglomerated combustion particulates characterized by an increase in at least one of an average particulate diameter or an average particulate mass.
    Type: Application
    Filed: March 25, 2013
    Publication date: October 3, 2013
    Inventor: DAVID B. GOODSON
  • Patent number: 8475562
    Abstract: A gas purification apparatus capable of removing fine particles of substantially any size without lowering the efficiency of gas supply. A loader module of a substrate processing apparatus includes a fan filter unit for producing a downward flow of atmospheric air in the internal space of a transfer chamber. The fan filter unit includes a fan for generating an atmospheric air flow, a filter of mesh structure for trapping and removing particles mixed in the atmospheric air flow, an irradiation heater disposed between the fan and the filter, and a high temperature part disposed in the atmospheric air flow and higher in temperature than the filter.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: July 2, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Tsuyoshi Moriya
  • Patent number: 8449660
    Abstract: A first unsintered sheet made of PTFE having a standard specific gravity of 2.16 or more and a second unsintered sheet made of PTFE having a standard specific gravity of less than 2.16 are laminated, and a pressure is applied to a resulting laminated body so as to obtain a pressure-bonded article. The pressure-bonded article is stretched in a specified direction at a temperature lower than a melting point of PTFE, and then the pressure-bonded article is stretched further in the specified direction at a temperature equal to or higher than the melting point of PTFE or heated to a temperature equal to or higher than the melting point of PTFE. Thereafter, the pressure-bonded article stretched in the specified direction is stretched in a width direction perpendicular to the specified direction at a temperature lower than the melting point of PTFE.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 28, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Shunichi Shimatani, Akira Sanami
  • Patent number: 8404020
    Abstract: A method for monitoring operation of a rapper in an electrostatic precipitator using a rapper control system is described. The method includes determining model electrical characteristics of the rapper. The model electrical characteristics of the rapper correspond to model mechanical operating characteristics of the rapper. The method also includes storing data corresponding to the model electrical characteristics and the model mechanical operating characteristics of the rapper, determining actual electrical characteristics of the rapper, and comparing the actual electrical characteristics of the rapper to the stored model electrical characteristics to determine actual mechanical operating characteristics of the rapper.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: March 26, 2013
    Assignee: Babcock & Wilcox Power Generation Group, Inc.
    Inventors: Terry Lewis Farmer, Vivek Badami, Charles Erklin Seeley, David F. Johnston, Michael M. Mahler, Timothy Gerald Lawrence
  • Patent number: 8177885
    Abstract: A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 15, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Patent number: 8007566
    Abstract: An electrostatic precipitator including: a collecting electrode in a gas passage; a discharge electrode in the gas passage and separated by a gap from the collecting electrode; a power supply applying a voltage to the discharge electrode, wherein the voltage establishes an electric field between the discharge electrode and the collecting electrode to ionize gas flow in the gap, and a resistor in series with the discharge electrode and having an effective resistance in series with the discharge electrode of at least 50 Ohms.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: August 30, 2011
    Assignee: Babcock & Wilcox Power Generation Group, Inc.
    Inventors: Younsi Abdelkrim, Zhou Yingneng, David Johnston, Robert W. Taylor
  • Patent number: 7862649
    Abstract: A particulate matter detection device includes a collection electrode that collects the particulate matter, a discharge electrode that allows a corona discharge to occur when a voltage is applied between the collection electrode and the discharge electrode, a measurement electrode, the impedance between the collection electrode and the measurement electrode changing when the collection electrode has collected the particulate matter, and a measurement section that detects a change in the impedance between the collection electrode and the measurement electrode, the particulate matter detection device detecting the particulate matter by charging the particulate matter contained in the gas by utilizing the corona discharge, collecting the charged particulate matter by the collection electrode by utilizing an electrostatic force, and detecting a change in the impedance between the collection electrode that has collected the particulate matter and the measurement electrode using the measurement section.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: January 4, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Takeshi Sakuma, Yasumasa Fujioka, Atsuo Kondo
  • Patent number: 7833322
    Abstract: An air treatment apparatus that includes an electrode assembly, a voltage supply, a current sensing device operably coupled to the electrode assembly, and a voltage control device coupled to the current sensing device and the voltage supply. The voltage control device is configured to regulate the level of voltage based on the level of current flowing through the current sensing device to maintain the voltage and current in the electrode assembly within designated ranges.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: November 16, 2010
    Assignee: Sharper Image Acquisition LLC
    Inventors: Igor Y. Botvinnik, Charles E. Taylor
  • Patent number: 7736418
    Abstract: The aim of the invention is to be able to adapt an item of visualization or optimization software with the least possible amount of effort made on any electrostatic filter configurations. To this end, the invention provides that the electrostatic filter, the high-voltage supply units, and the auxiliary functional units can be used by the software modules in the server component as objects with characteristic features and with characteristic methods, that are capable of being accessed as information, which only exists in the server component, for the client modules via data interfaces.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: June 15, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventor: Norbert Graβ
  • Patent number: 7655068
    Abstract: A method to facilitate improving electrostatic precipitator performance is provided. The method includes providing an electrostatic precipitator including an inlet, a collector chamber and an outlet, where the collector chamber includes a plurality of discharge electrodes and a plurality of collector electrodes. The method also includes defining a respective discharge electrode V-I performance for each of the plurality of discharge electrodes, identifying a particle removal characteristic for each respective discharge electrode based on the respective discharge electrode V-I performance for each of the plurality of discharge electrodes and positioning each of the plurality of discharge electrodes in the electrostatic precipitator according to the particle removal characteristic for each respective discharge electrode.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: February 2, 2010
    Assignee: General Electric Company
    Inventors: David Johnston, James Easel Roberts, Robert Warren Taylor, Yingneng Zhou, Abdelkrim Younsi, Jennifer Lynn Molaison, Wei Wu
  • Patent number: 7651548
    Abstract: The frequency of a cyclically varying voltage, (fv), is made equal to or higher than the frequency of a streamer discharge, (fs), thereby making it possible to reduce the discharge delay time which is caused in a single streamer discharge.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: January 26, 2010
    Assignee: Daikin Industries, Ltd.
    Inventors: Toshio Tanaka, Kenkichi Kagawa, Kanji Motegi
  • Patent number: 7497893
    Abstract: A method for handling a fluid may be incorporated into the operation of, for example, a corona discharge device and an electric power supply. Such a corona discharge device typically includes at least one corona discharge electrode and at least one collector electrode positioned proximate each other so as to provide a total inter-electrode capacitance within a predetermined range. The electric power supply is connected to supply an electric power signal to said corona discharge and collector electrodes so as to cause a corona current to flow between the corona discharge and collector electrodes. A relationship between alternating and direct (or constant, non-time varying) components of the voltage may be expressed as (Vac/Vdc)?(Iac/Idc).
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: March 3, 2009
    Assignee: Kronos Advanced Technologies, Inc.
    Inventor: Igor A. Krichtafovitch
  • Patent number: 7452403
    Abstract: A system for detecting partial discharge activity in an electrostatic precipitator is provided. The system includes one or more sensors configured to receive and transmit signals representative of voltage or current behavior of the electrostatic precipitator. The system also includes a processor configured to receive the signals from the one or more sensors and configured for detecting one or more occurrences of partial discharge activity in the electrostatic precipitator.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 18, 2008
    Assignee: General Electric Company
    Inventors: Abdelkrim Younsi, Yingneng Zhou, David Fulton Johnston, Terry Lewis Farmer, Robert Warren Taylor
  • Publication number: 20080196579
    Abstract: A method for the acceleration of an electromagnetic rapper, particularly for an electrostatic precipitator, which includes a metal cylinder as a hammer, an electrical coil for lifting the metal cylinder and a coil energizer for energizing the electrical coil. For cleaning a surface the metal cylinder is lifted by an initial electrical pulse generated by the coil energizer. The coil energizer supplies the electrical coil with an additional electrical pulse so that the metal cylinder is accelerated when it has reached the maximum point of its trajectory.
    Type: Application
    Filed: July 20, 2007
    Publication date: August 21, 2008
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventor: Anders Johansson
  • Patent number: 7364606
    Abstract: Provided are a hollow inner electrode constituted by an electrically conductive filter capable of capturing particulates, a cylindrical outer electrode circumferentially surrounding the electrode, a housing incorporated in a flow passage of exhaust and accommodating the electrodes and, a temperature sensor for detecting temperature of the exhaust and an electric discharge controller for controlling electric power to be distributed to the electrodes and on the basis of a detected value of the temperature sensor. When the temperature of the exhaust obtained by the temperature sensor is lowered, electric power necessary for generation of discharge plasma is distributed by the discharge controller to the electrodes and, thereby oxidizing the particulates captured by the electrode to reduce electricity consumption.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: April 29, 2008
    Assignee: Hino Motors, Ltd.
    Inventors: Masatoshi Shimoda, Koichi Machida, Takatoshi Furukawa
  • Patent number: 7357828
    Abstract: An air cleaner including a constant current power supply is provided according to an embodiment of the invention. The air cleaner includes a collector cell and a constant current power supply coupled to the collector cell. The constant current power supply is configured to maintain a substantially constant electrical current output to the collector cell, compare an output voltage of the constant current power supply to an upper voltage threshold VU and to a lower voltage threshold VL, and shut down the constant current power supply if the output voltage is not between the upper voltage threshold VU and the lower voltage threshold VL.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: April 15, 2008
    Assignee: Oreck Holdings LLC
    Inventor: John Relman Bohlen
  • Patent number: 7351274
    Abstract: An intense field dielectric air filtration system associated with an air conditioning unit includes a microprocessor based control system which may be connected to the thermostat of the air conditioning unit to energize the air filtration system in response to a call for heat or cooling signal at the thermostat or startup of the fan motor for the air conditioning unit. The control system includes a power supply for the air filtration system together with voltage and current monitoring circuits for detecting a fault condition. Filtration system on/off and timing function reset switches are connected to the microprocessor and visual displays, including a multicolored LED bargraph display, are controlled by the microprocessor to indicate voltage potential applied to the air filtration system, a fault condition or a test mode.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: April 1, 2008
    Assignee: American Standard International Inc.
    Inventors: Robert W. Helt, Stephen J. Vendt, Roger L. Boydstun, J. Mark Hagan
  • Patent number: 7258723
    Abstract: A particulate filter assembly includes an electrode assembly, a particulate filter positioned in an electrode gap defined between two electrodes of the electrode assembly, a power supply electrically coupled to the electrode assembly, and a controller for controlling operation of the power supply to apply a regenerate-filter signal to the electrode assembly to oxidize particulates collected by the particulate filter. An associated method of regenerating the particulate filter is disclosed.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 21, 2007
    Assignee: Arvin Technologies, Inc.
    Inventors: Wilbur H. Crawley, Randall J. Johnson, Stephen P. Goldschmidt
  • Patent number: 7182805
    Abstract: An air conditioning device for heating and/or an environment is provided. The air conditioning device includes a heat exchanging apparatus, a passage, and a corona discharge apparatus. The passage is in thermal communication with the heat exchanging apparatus and extends between an inlet and an outlet. The corona discharge apparatus is disposed within the passage to draw a fluid from the environment into the passage through the inlet, move the fluid through the passage to permit the heat exchanger to remove or heat the fluid, and expel the fluid through the outlet into the environment. As such, the environment is cooled or heated. Embodiments of the present invention include package terminal air conditioners (PTACs), room air conditioners (RACs), and mini-split heating and cooling systems.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: February 27, 2007
    Assignee: Ranco Incorporated of Delaware
    Inventor: Debra Jean Reaves
  • Patent number: 7122070
    Abstract: A device for handling a fluid includes a corona discharge device and an electric power supply. The corona discharge device includes at least one corona discharge electrode and at least one collector electrode positioned proximate each other so as to provide a total inter-electrode capacitance within a predetermined range. The electric power supply is connected to supply an electric power signal to said corona discharge and collector electrodes so as to cause a corona current to flow between the corona discharge and collector electrodes. An amplitude of an alternating component of the voltage of the electric power signal generated is no greater than one-tenth that of an amplitude of a constant component of the voltage of the electric power signal.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: October 17, 2006
    Assignee: Kronos Advanced Technologies, Inc.
    Inventor: Igor A. Krichtafovitch
  • Patent number: 7097689
    Abstract: A process and system for purifying an impure gas to produce a purified gas in a gas purification system and protecting the system from damage by a) passing a portion of a first gas stream into a reactor vessel, which exits as a second purified gas stream; b) combining a portion of the second purified gas stream with another portion of the first gas stream to form a combined gas stream; and c) passing the combined gas stream into a sensing device to regulate the flow of the first and second gas streams into the reactor vessel.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: August 29, 2006
    Assignee: Praxair Technology, Inc.
    Inventors: John Fredric Billingham, Jerry Michael Mahl
  • Patent number: 7081152
    Abstract: A gas separation apparatus which uses electrostatic precipitators and a DC power supply is controlled to optimally remove moderate to high resistivity ash. The DC power supply is pulse width modulated to maximize the product of the peak electric field and the average electric field. The method used to optimize operation includes selecting initial on and off times for the power supply, operating the power supply using the initial off and on times, and progressively decreasing the off time. A determination is made whether the off time may be further decreased. Ultimately, the on and off time intervals that produce the highest peak and average voltage are determined, and the system is operated using these parameters. A procedure may be periodically repeated to monitor the process and detect if there has been a change in the system that would require new time intervals.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: July 25, 2006
    Assignee: Electric Power Research Institute Incorporated
    Inventors: Ralph F. Altman, Robert N. Guenther
  • Patent number: 6824587
    Abstract: A method and apparatus for removing contaminants from gas streams. A first step involves selecting a contaminant to be removed from a gas stream and determining a characteristic ionizing energy value required to selectively ionize the selected contaminant with minimal effect on other contaminants in the gas stream. A second step involves applying the characteristic ionizing energy value to the gas stream and selectively ionizing the selected contaminant. A third step involves capturing the selected contaminant after ionization.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: November 30, 2004
    Inventor: Moustafa Abdel Kader Mohamed
  • Publication number: 20040216607
    Abstract: A method and apparatus for removing contaminants from gas streams. A first step involves selecting a contaminant to be removed from a gas stream and determining a characteristic ionizing energy value required to selectively ionize the selected contaminant with minimal effect on other contaminants in the gas stream. A second step involves applying the characteristic ionizing energy value to the gas stream and selectively ionizing the selected contaminant. A third step involves capturing the selected contaminant after ionization.
    Type: Application
    Filed: May 28, 2004
    Publication date: November 4, 2004
    Inventor: Moustafa Abdel Kader Mohamed
  • Patent number: 6461405
    Abstract: A method of operating an electrostatic precipitator (7) includes feeding the precipitator with electric power generated by a power supply (10) according to a regime adapted to impart between the precipitator electrodes a voltage having a DC component and an AC component. A control unit (8) measures the electrode voltage, establishes a voltage peak value and a voltage mean value, and computes the product of peak value by mean value to arrive at an index of expected performance (IEP). Operating set points are tuned so as to maximize this index of expected performance.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: October 8, 2002
    Assignee: F.L. Smidth Airtech A/S
    Inventor: Victor Reyes
  • Patent number: 6350303
    Abstract: A solid powder trapping system for filtering out solid powder from a mixture of gaseous reactants that also includes a device capable of determining the degree of powder accumulation inside the trap. The powder trapping system uses a powder trap to catch the solid powder within the gaseous mixture. A magnetic flux sensor is also installed inside the trap for measuring a magnetic flux whose strength depends on the amount of solid powder inside the trap. The magnetic flux sensor is connected to a display device so that reading from the display device reflects the amount of solid powder accumulated inside the powder trap.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: February 26, 2002
    Assignee: United Microelectronics Corp.
    Inventor: Jack Wu
  • Publication number: 20010011499
    Abstract: A method of operating an electrostatic precipitator (7) comprises feeding the precipitator with electric power generated by a power supply (10) according to a regime adapted to impart between the precipitator electrodes a voltage having a DC components and an AC component. A control unit (8) measures the electrode voltage, establishes a voltage peak value and a voltage mean value, and computes the product of peak value by mean value to arrive at an index of expected performance (IEP) . Operating set points are tuned so as to maximize this index of expected performance.
    Type: Application
    Filed: March 19, 2001
    Publication date: August 9, 2001
    Inventor: Victor Reyes
  • Patent number: 5707422
    Abstract: A method for use in an electrostatic precipitator unit, of controlling, with a view to cleaning an incoming dust-laden gas, the supply of conditioning agent to the incoming contaminated gas upstream of the precipitator unit. The precipitator unit includes discharge electrodes and collecting electrodes, between which a varying high voltage is maintained by means of a pulsating direct current supplied thereto. The frequency, the pulse charge and/or pulse length of the pulsating direct current are so varied that a plurality of frequency-charge-length combinations are obtained. For each combination, a figure of merit is measured or calculated. The figures of merit are used for establishing an optimal combination. The supply of conditioning agent is adjusted in dependence upon the pulse frequency of the established optimal combination.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: January 13, 1998
    Assignee: ABB Flakt AB
    Inventors: Hans Jacobsson, Kjell Porle
  • Patent number: 5639294
    Abstract: Method for controlling, in case of flashover between electrodes in an electrostatic precipitator, the current supply to the electrodes from a controllable high-voltage direct-current source. The current supplied to the precipitator and the voltage between the electrodes of the precipitator are measured substantially continuously or at close intervals. After the flashover, the current supply to the electrodes of the precipitator is completely interrupted during a first time interval. During a second time interval directly following the first time interval, a current which is greater that the one supplied immediately before the flashover is supplied to the precipitator. Subsequently, the current is reduced to a value below the one prevailing immediately before the flashover.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: June 17, 1997
    Assignee: ABB Flakt AB
    Inventor: Per Ranstad
  • Patent number: 5597403
    Abstract: A system for preconditioning flue gas to be treated in an electrostatic precipitator having a set of electrostatic elements and a power supply, which supplies an intermittent power to the electrostatic elements, includes a source of a conditioning agent, and a current sensor and a voltage sensor for detecting the half-cycle current and voltage supplied to the electrostatic elements. The system also includes a power measuring circuit, responsive to the current sensor and to the voltage sensor, which develops an indication of the power supplied to the electrostatic elements and a controller, responsive to the power indication, which controls the amount of conditioning agent added to the flue gas in order to maintain the power at a substantially predetermined level.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: January 28, 1997
    Assignee: The Chemithon Corporation
    Inventor: William G. Hankins
  • Patent number: 5591249
    Abstract: A method is used for preconditioning flue gas to be treated in an electrostatic precipitator having a set of electrostatic elements which are intermittently energized by a power supply. The method uses a current sensor and a voltage sensor to detect the current and the voltage supplied to the electrostatic elements during an energized half-cycle of the power delivered to the electrostatic precipitator and develops an indication of the intermittent power supplied to the electrostatic elements from the current and voltage sensor measurements. The amount of a conditioning agent added to the flue gas is controlled to maintain the power indication at a substantially predetermined level.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: January 7, 1997
    Assignee: The Chemithon Corporation
    Inventor: William G. Hankins
  • Patent number: 5542964
    Abstract: Air purification system where air is subjected to complex electrical field resulting from a DC voltage and AC frequency in kilovolt and kilohertz range respectively, applied to screen assembly in air path. DC amplitude and AC frequency self regulate to selected parameters. Parameters are selectable independently of one another.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 6, 1996
    Assignee: CRS Industries, Inc.
    Inventors: Arnold C. Kroeger, Curt J. Lawnicki, Arthur E. McIvor
  • Patent number: 5401299
    Abstract: Air purification system where air is subjected to complex electrical field resulting from a DC voltage and AC frequency in kilovolt and kilohertz range respectively, applied to screen assembly in air path. DC amplitude and AC frequency self regulate to selected parameters. Parameters are selectable independently of one another.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: March 28, 1995
    Assignee: CRS Industries, Inc.
    Inventors: Arnold C. Kroeger, Curt J. Lawnicki, Thomas M. Smedley
  • Patent number: 5356597
    Abstract: The present invention provides a flue gas conditioning system and method for generating conditioning agent used in the removal of entrained particles in a flue gas flow with an electrostatic precipitator. The invention involves the use of a catalytic converter movable between an operative position where the flue gas flows through the catalyst and converts SO.sub.2 contained in the flue gas to SO.sub.3 when conditioning agent is needed and an inoperative position where the flue gas does not flow through the catalyst when conditioning agent is no longer needed. The movable catalytic converter and related assembly may take variable configurations to accommodate various flue gas ductworks and space limitations and may carry one or more SO.sub.2 /SO.sub.3 converters providing a plurality of open and generally parallel flow paths of the flue gas that are formed by a catalyst effective over a wide range of temperatures for the controlled conversion of preferably a low percentage of SO.sub.2 in the flue gas to SO.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: October 18, 1994
    Assignee: Wilhelm Environmental Technologies, Inc.
    Inventors: Robert A. Wright, George R. Dennis