Molecular Sieve Patents (Class 95/902)

Cross-Reference Art Collections

Carbon (Class 95/903)
  • Patent number: 11851559
    Abstract: The present invention relates to a BCDA-based semi-alicyclic homo- or co-polyimide membrane material for gas separation and a preparation method thereof. The polyimide material prepared according to the present invention has high solubility in casting solvents, particularly in polar organic solvents, by interrupting asymmetry in the polyimide chain structure and formation of polyimide complexes compared with aromatic polyimides, and has higher heat resistance than the conventional aromatic polyimides and aliphatic polyimides, so that it is useful for the process of a high-selective permeable composite membrane or a asymmetric hollow fiber membrane used for commercial purposes, suggesting that it can be effectively used as a membrane for gas separation in various fields. In addition, the polyimide material membrane for gas separation of the present invention is useful because it has superior gas separation properties to the conventional commercialized aromatic polyimides or semi-alicyclic polyimides.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: December 26, 2023
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Jeong Hoon Kim, Bong Jun Chang, Simon MoonGeun Jung, Su Young Moon, Chae Young Park, Hoon moh Seong
  • Patent number: 11819796
    Abstract: A method for producing oxygen from air using vacuum swing adsorption by means of a unit including at least two adsorbers each following, with an offset a pressure cycle, with a decompression step including at least a co-current first decompression sub-step for the partial balancing of pressure with the other adsorber which is performing counter-current recompression by means of a balancing valve, and, at least for one cycle out of three, a dead time sub-step which succeeds the first decompression sub-step, the method including a pressure of X bar at the end of the first decompression sub-step for the cycles that do not have a dead time sub-step, and a pressure of X bar at the end of the dead time sub-step, opening the balancing valve identically during the first decompression sub-step and the dead time sub-step, for the cycles that do have a dead time sub-step.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: November 21, 2023
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Guillaume Rodrigues, François Darrigade, Patrick Le Bot, Pierre Petit, Stéphane Pusiol, Maxime Perez
  • Patent number: 11754229
    Abstract: Disclosed are processes, apparatuses, and systems in natural gas pipelines to significantly reduce pigging and blowdown emissions. In an example, a process involves filtering and/or separating pigging or blowdown emissions. The filtered and/or separated pigging/blowdown products can then be stored in a storage, sent back into the natural gas pipeline at a downstream location, or sent to an adjacent pipeline.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: September 12, 2023
    Assignee: NEXT CARBON SOLUTIONS, LLC
    Inventors: Ivan Van Der Walt, Ben Heichelbech, Connor Rivard, Vikrum Subra
  • Patent number: 11712653
    Abstract: Described are methods, devices, and systems useful for adsorbing organometallic vapor onto solid adsorbent material to remove the organometallic vapor from a gas mixture that contains the organometallic vapor and other vapor, particulate materials, or both.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: August 1, 2023
    Assignee: ENTEGRIS, INC.
    Inventors: Charles H. Applegarth, Rocky D. Gipson, Sarah Vogt, Joshua T. Cook, Matthew Browning, Marco Holzner
  • Patent number: 11603313
    Abstract: Novel methods for pretreating a rare-gas-containing stream exiting an etch chamber followed by recovering the rare gas from the pre-treated, rare-gas containing stream are disclosed. More particularly, the invention relates to the pretreatment and recovery of a rare gas, such as xenon or krypton, from a nitrogen-based exhaust stream with specific gaseous impurities generated during an etch process that is performed as part of a semiconductor fabrication process.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: March 14, 2023
    Assignee: Praxair Technology, Inc.
    Inventors: Jennifer Bugayong Luna, Atul M. Athalye, Ce Ma, Ashwini K. Sinha
  • Patent number: 8904667
    Abstract: A drying device comprising a titano-alumino-phosphate with thermal management for the more efficient drying of objects and appliances, and its production. Further, a drying method for obtaining dried objects and appliances, as well as a method for regeneration accompanied by the desorption of water from water-containing titano-alumino-phosphate.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 9, 2014
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Silke Sauerbeck, Rolf Kurzhals, Arno Tissler
  • Patent number: 8734576
    Abstract: Embodiments of the invention relate to a composite hydrogen storage material comprising active material particles and a binder, wherein the binder immobilizes the active material particles sufficient to maintain relative spatial relationships between the active material particles.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: May 27, 2014
    Assignee: Societe BIC
    Inventor: Joerg Zimmermann
  • Patent number: 8658120
    Abstract: Disclosed is a non-thermofusible phenol resin powder having an average particle diameter of not more than 20 ?m and a single particle ratio of not less than 0.7. This non-thermofusible phenol resin powder preferably has a chlorine content of not more than 500 ppm. This non-thermofusible phenol resin powder is useful as an organic filler for sealing materials for semiconductors and adhesives for semiconductors. The non-thermofusible phenol resin powder is also useful as a precursor of functional carbon materials such as a molecular sieve carbon and a carbon electrode material.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: February 25, 2014
    Assignee: Air Water Inc.
    Inventors: Naoto Yoshinaga, Satoshi Ibaraki, Yoshinobu Kodani, Takaomi Ikeda
  • Patent number: 8540802
    Abstract: The disclosure relates generally to a gas-separation system for separating one or more components from a multi-component gas using Zeolitic imidazolate or imidazolate-derived framework.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 24, 2013
    Assignee: The Regents of the University of California
    Inventors: Omar M. Yaghi, Hideki Hayashi, Rahul Banerjee
  • Patent number: 8366806
    Abstract: A hydrocarbon adsorbent that includes a zeolite with either a H-FER structure or a MOR structure in which the pore diameter has been adjusted by ion exchange. A propane adsorbent that includes a zeolite with a MFI structure having a Si/Al ratio of no more than 20. A hydrocarbon removal unit that includes a TSA pre-purification unit having a column packed with sequential layers of activated alumina, a NaX zeolite, and the hydrocarbon adsorbent. A method of reducing the hydrocarbon content within liquid oxygen inside a cryogenic air separation unit that includes purifying feed air with the above pre-purification unit.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 5, 2013
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Tatsuya Hidano, Morimitsu Nakamura, Masato Kawai
  • Patent number: 8361199
    Abstract: Methods of purifying H2Se by removing H2S and/or H2O are disclosed. The amount of H2S in the H2Se-containing gas is reduced below 10 ppmv by passing the H2Se-containing gas through an AW-500 molecular sieve. H2S and H2O are removed by passing H2Se through a 4 A molecular sieve and subsequently passing H2Se through an AW-500 molecular sieve.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 29, 2013
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Nathan Stafford, Richard J. Udischas
  • Patent number: 8337591
    Abstract: A metal-organic framework-based mesh-adjustable molecular sieve (MAMS) exhibiting a temperature-dependent mesh size. The MAMS comprises a plurality of metal clusters bound with a plurality of amphiphilic ligands, each ligand comprising a hydrophobic moiety and a functionalized hydrophilic moiety, and wherein the metal clusters and amphiphilic ligand functionalized hydrophilic moieties form a metal cluster layer, the metal cluster layer forming at least one hydrophilic pore. On each side of the metal cluster layer, a plurality of associated amphiphilic ligand hydrophobic moieties cooperate with the metal cluster layer to form a tri-layer and a plurality of tri-layers are packed in a facing-spaced apart relationship to form at least one hydrophobic pore.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: December 25, 2012
    Assignee: Miami University
    Inventors: Hong-Cai Zhou, Shengqian Ma
  • Patent number: 8303697
    Abstract: A method for purifying polluted air having particle phase pollutants and gaseous phase pollutants is provided. The method comprising: separately purifying and treating particle phase and gaseous phase pollutants present in the air; providing a dust cleaning apparatus, a catalytic filter core and a valve for controlling an airflow path within an air purification apparatus; controlling the airflow path for the air to bypass the catalytic filter core in a way that: if the amount of particle phase pollutants is above a predetermined value, the valve is moved to the open position to enable the air to bypass the catalyst filtering core; if the amount of particle phase pollutants is less than a predetermined value, the valve is moved to the closed position to force the air to pass through the catalyst filtering core.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: November 6, 2012
    Assignee: Akos Advanced Technology Ltd.
    Inventors: Yiu Wai Chan, Sui Chun Law
  • Patent number: 8211208
    Abstract: A method for purifying polluted air having particle phase pollutants and gaseous phase pollutants is provided. The method comprising: separately purifying and treating particle phase and gaseous phase pollutants present in the air; providing a dust cleaning apparatus, a catalytic filter core and a valve for controlling an airflow path within an air purification apparatus; controlling the airflow path for the air to bypass the catalytic filter core in a way that: if the amount of particle phase pollutants is above a predetermined value, the valve is moved to the open position to enable the air to bypass the catalyst filtering core; if the amount of particle phase pollutants is less than a predetermined value, the valve is moved to the closed position to force the air to pass through the catalyst filtering core.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: July 3, 2012
    Assignee: Akos Advanced Technology Ltd.
    Inventors: Yiu Wai Chan, Sui Chun Law
  • Patent number: 8192709
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 5, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8123835
    Abstract: High rate and high crush-strength adsorbent particles and collections of such particles, and particularly LiLSX particles, are provided. A binder is employed in the form of a colloidal solution during the method of manufacture. Suitable binders include various silica binders. The particles are made using the steps of mixing, agglomeration, calcination and in the case of certain adsorbents such as LiX and LiLSX, ion exchange and activation. When the adsorption rate is expressed in the form SCRR/?p (mmol mm2/g s), desirable collections of adsorbent particles can have values of at least 4.0 for the highly-exchanged Li (at least 90% Li exchanged) form of the collection of particles and can further be characterized by particles having average crush strengths of at least 0.9 lbf for particles having an average diameter of at least about 1.0 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: February 28, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Jian Zheng, Steven John Pontonio, Neil Andrew Stephenson, Philip Alexander Barrett
  • Patent number: 8080139
    Abstract: The present invention relates to a method of anhydrous ethanol production using circulation by multiple towers' alternation, the procedure includes the steps of heating, adsorption, internal circulation, vacuum suction, washing and resolving etc. The method can prolong the life of adsorbent, reduce the heat exchanger's surface, cooling water, the equipment investment and energy consumption, provide high ethanol recovery rate and high dehydration, and protect environment.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: December 20, 2011
    Inventors: Yaling Zhong, Yuming Zhong
  • Patent number: 8071063
    Abstract: The present invention relates to the selective separation of hydrogen (“H2”) hydrocarbons in streams containing both hydrogen and hydrocarbons (e.g. methane, ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in either a pressure swing adsorption process, a temperature swing adsorption process, or a membrane separations process to separate hydrogen from hydrocarbons present in hydrogen production streams or petrochemical/petroleum refining product streams and intermediate streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 6, 2011
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8038778
    Abstract: An apparatus (10) for purifying polluted air consisting of particle phase pollutants and gaseous phase pollutants, the apparatus (10) comprising: a dust level sensor (23) to measure the amount of particle phase pollutants in the polluted air; a dust removal component (14) to remove the particle phase pollutants from the polluted air; a catalyst filtering core (17) to decompose the gaseous phase pollutants by chemical reaction; a valve (22) for selectively controlling a path of air flow within the apparatus (10) and is movable between an open position and closed position, the valve (22) being positioned downstream from the dust removal component (14); wherein if the amount of particle phase pollutants measured by the dust level sensor (23) is above a predetermined value, the valve (22) is moved to the open position to enable the air to bypass the catalyst filtering core (17); and if the amount of particle phase pollutants measured by the dust level sensor (23) is less than a predetermined value, the valve (22)
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: October 18, 2011
    Assignee: Akos Advanced Technology Ltd.
    Inventors: Yiu Wai Chan, Sui Chun Law
  • Patent number: 7935177
    Abstract: The present invention relates to a novel method of purifying a gas stream contaminated by CO2, hydrocarbons and/or nitrogen oxides, in particular a gas stream based on air or a syngas, by adsorption on a bed of aggregated zeolitic adsorbent based on an LSX zeolite or LSX and X zeolites, of which at least 90% of the exchangeable cationic sites of the LSX zeolite or of the LSX/X zeolite blend are occupied by sodium ions, and the inert binder of which represents at most 5% of the weight of the adsorbent.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: May 3, 2011
    Assignee: Ceca S.A.
    Inventors: Cecile Lutz, Paul-Guillaume Schmitt
  • Patent number: 7931736
    Abstract: A hydrocarbon adsorbent that includes a zeolite with either a H-FER structure or a MOR structure in which the pore diameter has been adjusted by ion exchange. A propane adsorbent that includes a zeolite with a MFI structure. A hydrocarbon removal unit that includes a TSA pre-purification unit having a column packed with sequential layers of activated alumina, a NaX zeolite, and the hydrocarbon adsorbent. A method of reducing the hydrocarbon content within liquid oxygen inside a cryogenic air separation unit that includes purifying feed air with the above pre-purification unit.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: April 26, 2011
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Tatsuya Hidano, Morimitsu Nakamura, Masato Kawai
  • Patent number: 7901486
    Abstract: A process is disclosed for removing heavy metals from a hydrocarbon gas stream by contacting the hydrocarbon gas stream, which contains a heavy metal and less than 10 ppm oxidizing compounds, with a composition containing a molecular sieve and sulfur resulting in a treated stream containing less heavy metal than the hydrocarbon gas stream; wherein the molecular sieve contains alumina, silica, and iron, and optionally copper and zinc. Optionally, the hydrocarbon gas stream can also contain a sulfur compound.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: March 8, 2011
    Assignee: ConocoPhillips Company
    Inventors: Joseph B. Cross, John M. Hays, Roland Schmidt, Vidyadhar Y. Katdare
  • Patent number: 7789943
    Abstract: Temperature-adjustable pore size molecular sieves comprise a plurality of metal clusters bound with a plurality of amphiphilic ligands, each ligand comprising a functionalized hydrophobic moiety and a functionalized hydrophilic moiety, and wherein the metal clusters and amphiphilic ligand hydrophilic moieties form a metal cluster layer, the metal cluster layer forming at least one hydrophilic pore. On each side of the metal cluster layer, a plurality of associated amphiphilic ligand hydrophobic moieties cooperate with the metal cluster layer to form a tri-layer and a plurality of tri-layers are held in proximity with each other to form at least one hydrophobic chamber.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: September 7, 2010
    Assignee: Miami University
    Inventors: Hong-Cai Zhou, Shengqian Ma
  • Patent number: 7625429
    Abstract: A zeolite adsorbent for desulfurization and a method of preparing the same. More particularly, a zeolite adsorbent for desulfurization in which the relative crystallinity of Y zeolite that is ion exchanged with Ag is 45% to 98%, and a method of preparing the same. The zeolite adsorbent for desulfurization has excellent crystallinity over the known zeolite adsorbent for desulfurization, and thus has better performance of adsorbing sulfur compounds though it contains less Ag. Accordingly, when the sulfur compounds of a fuel gas are removed by employing the zeolite adsorbent for desulfurization, a desulfurizing device that is bettereven with less cost can be constructed.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: December 1, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Soon-ho Kim, Hyun-chul Lee, Yulia Potapova, Eun-duck Park, Eun-yong Ko
  • Patent number: 7597745
    Abstract: A porous filter medium forms a filter or liner for extracting hydrocarbons from vapors emitted from a motorized vehicle, device or appliance fuel tank. The filter medium is a polymer network of a foam, nonwoven or collection of particles and has fine pore size and a butane working capacity (W/W %) of 4.0 percent or higher.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: October 6, 2009
    Assignee: Foamex Innovations Operating Company
    Inventors: Jeffrey I. Lebowitz, Joseph W. Lovette, Chiu Y. Chan
  • Patent number: 7592284
    Abstract: A high capacity adsorbent may be used for enriching oxygen concentration in an air stream. Such a high capacity adsorbent may be from about 2 to about 3 times lighter relative to the currently available technology. Furthermore, the high capacity adsorbent is readily capable of regeneration after deactivation by water vapor. Unlike current available immobilization technology in which clay binder was used to bind 13X zeolite and additional 10% organic binder was used to immobilize beads, the adsorbents of the present invention may be made using just an organic binder, thereby reducing pore spoilage caused by the clay binder. Further unlike conventional adsorbents, which may use sodium as its cation, the adsorbent of the present invention uses a lithium cation, thereby resulting in enhanced nitrogen adsorption performance.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: September 22, 2009
    Assignee: Honeywell International Inc.
    Inventors: Rehan Zaki, Russ Johnson
  • Patent number: 7527670
    Abstract: This invention comprises an adsorption process for the removal of at least N2O from a feed gas stream that also contains nitrogen and possibly CO2 and water. In the process the feed stream is passed over adsorbents to remove impurities such as CO2 and water, then over an additional adsorbent having a high N2O/N2 separation factor. In a preferred mode the invention is an air prepurification process for the removal of impurities from air prior to cryogenic separation of air. An apparatus for operating the process is also disclosed.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: May 5, 2009
    Assignee: Praxair Technology, Inc.
    Inventors: Mark William Ackley, Himanshu Saxena, Gregory William Henzler, Jeffert John Nowobilski
  • Patent number: 7431900
    Abstract: A hydrogen peroxide vapor generation unit (10) receives hydrogen peroxide and water solution at an interface (20) and interconnects with an air dryer (14) by way of nipples (72, 92). In one embodiment, the dryer includes a clamping assembly (42) which is latched (74, 94) with the nipples and which receives a disposable desiccant cartridge (40). In an alternate embodiment, a reusable desiccant cartridge (40?) is connected directly to the nipples (72, 92). When the desiccant cartridge (40?) is saturated, it is removed and placed in a regenerator unit (120). A regenerated cartridge is installed in its place.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: October 7, 2008
    Assignee: Steris Inc
    Inventors: Aaron L. Hill, Arthur T. Nagare, Frank E. Dougherty, Stanley M. Voyten
  • Patent number: 7381244
    Abstract: A process and an apparatus for removal of radon from indoor air. The process having the step of contacting indoor air with an adsorbent, that is a silver-exchanged zeolite. The apparatus for the removal of radon from indoor air comprises a silver exchanged zeolite.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: June 3, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Daniel Warren Tyndall, Timothy Christopher Golden, Thomas Stephen Farris, Fred William Taylor, Wayne Robert Furlan, John Joseph Rabasco
  • Patent number: 7326821
    Abstract: This invention is to a process for removing dimethyl ether from an olefin stream. The process includes contacting the olefin stream with a molecular sieve that has improved capacity to adsorb the dimethyl ether from the olefin stream. The molecular sieve used to remove the dimethyl ether has low or no activity in converting the olefin in the olefin stream to other products.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael A. Risch, John Di-Yi Ou
  • Patent number: 7309378
    Abstract: The present invention relates to a process for purifying a syngas of the CO/H2 or N2/H2 type, which consists in removing CO2 and possibly other gaseous impurities (water, etc.) before the gas undergoes a cryogenic process. These impurities are adsorbed by the gas stream to be purified passing over an NaLSX-type zeolite and then desorbed during a regeneration step which may be performed by raising the temperature (TSA) and/or reducing the pressure (PSA or VSA).
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: December 18, 2007
    Assignee: Arkema France
    Inventors: Stephane Bancon, Remi Le Bec
  • Patent number: 7306647
    Abstract: A mixed matrix membrane for separating gas components from a mixture of gas components is disclosed. The membrane comprises a continuous phase polymer with inorganic porous particles, preferably molecular sieves, interspersed in the polymer. The polymer has a CO2/CH4 selectivity of at least 20 and the porous particles have a mesoporosity of at least 0.1 cc STP/g. The mixed matrix membrane exhibits an increase in permeability of least 30% with any decrease in selectivity being no more than 10% relative to a membrane made of the neat polymer. The porous particles may include, but are not limited to, molecular sieves such as CVX-7 and SSZ-13, and/or other molecular sieves having the required mesoporosity. A method for making the mixed matrix membrane is also described. Further, a method is disclosed for separating gas components from a mixture of gas components using the mixed matrix membrane with mesoporous particles.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: December 11, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, Alexander Kuperman, De Q. Vu
  • Patent number: 7169212
    Abstract: This invention relates to gas separation processes using a Li-rho zeolite, in particular to an air separation process where the Li-rho zeolite is an oxygen selective adsorbent.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 30, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: David Richard Corbin
  • Patent number: 7153345
    Abstract: High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn—OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: December 26, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, David L. King
  • Patent number: 7041155
    Abstract: A nitrogen selective adsorbent comprises a zeolite of a faujasite crystalline structure containing Li+ and at least one of NH+ and H+ as essential cations, and has a nitrogen adsorption characteristic represented by specific correlation between the number of associated Li+ ions per unit lattice of a zeolite crystal and the amount of adsorbed nitrogen per unit lattice of the zeolite crystal. An air separation method employs the aforesaid nitrogen selective adsorbent for separation between nitrogen and oxygen by selective adsorption of nitrogen in air.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: May 9, 2006
    Assignee: Air Water, Inc.
    Inventors: Jin-Bae Kim, Hisanao Jo, Haruo Yoshioka, Hiromi Kiyama
  • Patent number: 7037360
    Abstract: An adsorbent for regenerator systems, to a heat utilization system and a regenerator system that comprise the adsorbent, and to a ferroaluminophosphate and a method for production thereof. More precisely, the invention relates to an adsorbent favorable for regenerator systems, which efficiently utilizes the heat source obtainable from cars and the like to thereby realize efficient regenerator systems, to a regenerator system that comprises the adsorbent, to a ferroaluminophosphate to be the adsorbent favorable for regenerator systems, and to a method for production thereof.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: May 2, 2006
    Assignees: Mitsubishi Chemical Corporation, Denso Corporation
    Inventors: Kouji Inagaki, Atsushi Kosaka, Satoshi Inoue, Yasukazu Aikawa, Takahiko Takewaki, Masanori Yamazaki, Hiromu Watanabe, Hiroyuki Kakiuchi, Miki Iwade
  • Patent number: 7011695
    Abstract: Zeolite adsorbent, and method of production, exchanged with calcium and barium cations, for purifying or separating a gas or gas mixture, in particular air, so as to remove therefrom the impurities found therein, such as hydrocarbons and nitrogen oxides (NxOy). The adsorbent is preferably an X or LSX zeolite and the gas purification process is of the TSA type.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: March 14, 2006
    Assignee: L'Air Liquide, Societe Anonyme A Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Serge Moreau, Elise Renou, Claire Szulman
  • Patent number: 6984765
    Abstract: The present invention is a separation process for producing a methanol, ethanol and/or dimethyl ether stream from a first stream containing C3+ hydrocarbons. The first stream comprises C3+ hydrocarbons, methanol, ethanol and/or dimethyl ether. The process comprises the step of passing the first stream through an adsorbent bed having a crystalline microporous material that preferentially adsorbs methanol, ethanol and/or dimethyl ether over the C3+ hydrocarbons.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: January 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sebastian C. Reyes, Venkatesan V. Krishnan, Gregory J. DeMartin, John Henry Sinfelt, Karl G. Strohmaier, Jose Guadalupe Santiesteban
  • Patent number: 6962617
    Abstract: Efficient removal of mercury from the exhaust gases of an industrial process or combustion process can be achieved using an adsorbent that can be regenerated by a simple and efficient method. The mercury is contacted with a sorbent material, the sorbent material being hydrogen mordenite or hydrogen clinoptilolite, for adsorbing mercury and causing the mercury to react with the sorbent material to produce mercury-laden sorbent material. The mercury-laden sorbent material can be heated to a temperature of at least about 400° C. so as to remove mercury from the mercury-laden sorbent material and to regenerate the sorbent material to allow reusing of the sorbent material for mercury removal.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: November 8, 2005
    Assignee: Lehigh University
    Inventor: Dale R. Simpson
  • Patent number: 6955710
    Abstract: Method and system on board an aircraft for the production of an oxygen-enriched gas stream from an oxygen/nitrogen gas mixture, particularly air, comprising at least one adsorber containing at least one adsorbent for adsorbing at least some of the nitrogen molecules contained in the oxygen/nitrogen feed mixture, characterized in that the adsorbent comprises a faujasite-type zeolite, having a Si/Al ratio of 1 to 1.50, exchanged to at least 80% with lithium cations. Aircraft equipped with such a system, in particular an airliner, especially an airliner of the long-range, large-capacity type.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 18, 2005
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et, l 'Exploitation des Procedes Georges Claude
    Inventors: Stéphane Lessi, Richard Zapata, Jean-Michel Cazenave, Jean Dehayes
  • Patent number: 6837917
    Abstract: A process for removal of ethylene oxide (EO) from ambient air laden with EO is passed through a zeolite-based removal media, which preferrably consists of the acid form of zeolite ZSM-5, herein referred to as “H-ZSM-5.” The process described herein may be applied to many forms, configurations and uses, such as, for example, gas masks, fume hood ventilation filters, cartridge filters, etc. Preferably, the H-ZSM-5 is configured within an apparatus in such a manner that the stream containing EO is brought into sufficient contact with the zeolite to remove the EO from the airstream.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: January 4, 2005
    Assignee: Guild Associates, Inc.
    Inventors: Christopher A. Karwacki, Joseph A. Rossin
  • Patent number: 6824590
    Abstract: A process for separating a feed gas into at least one product gas includes: (a) providing a gas separation apparatus with at least one adsorption layer including a lithium-exchanged FAU adsorbent having water desorption characteristics, defined by drying curves, similar to those for the corresponding fully sodium-exchanged FAU, a heat of adsorption for carbon dioxide equal to or lower than that for the corresponding fully sodium-exchanged FAU at high loadings of carbon dioxide, and onto which the adsorption layer water and/or carbon dioxide adsorb; (b) feeding into the gas separation apparatus a feed gas including nitrogen, oxygen, and at least one of water and carbon dioxide; and (c) collecting from a product end of the gas separation apparatus at least one product gas containing oxygen.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: November 30, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Douglas Paul Dee, Robert Ling Chiang, Gregory John Gondecki, Roger Dean Whitley, Jane Elizabeth Ostroski
  • Patent number: 6818333
    Abstract: Described is a supported zeolite membrane that consists of a zeolite/substrate composite layer that exhibits, in the n-butane/isobutane separation, a permeance of n-butane of at least 6.10−7 mol/m2.s.Pa and a selectivity of at least 250 at the temperature of 180° C. Said zeolite/substrate composite layer is thin and continuous. This membrane is used in processes for gas separation, vapor separation and liquid separation.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: November 16, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Chau, Mickaël Sicard, Ronan Le Dred
  • Patent number: 6806219
    Abstract: The present invention relates to zeolites X, most of the exchangeable sites of which are occupied by lithium and di- and/or trivalent cations, having an improved thermal stability and an improved crystallinity with respect to zeolites of the prior art with the same degree of exchange of lithium and of di- and/or trivalent cations. The zeolites of the present invention are particularly effective as adsorbents of the nitrogen present in various gas mixtures and are well suited to the noncryogenic separation of the gases of the air.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: October 19, 2004
    Assignee: Ceca, S.A.
    Inventors: Jean-Jacques Masini, Dominique Plee
  • Patent number: 6790260
    Abstract: High product recovery and low BSF are achieved for fast-cycle shallow adsorbers in VPSA gas separation enabled by the coupled effects of high intrinsic adsorption rate and proper particle size selection.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: September 14, 2004
    Assignee: Praxair Technology, Inc.
    Inventors: Mark William Ackley, James Smolarek
  • Patent number: 6761754
    Abstract: A nitrogen selective adsorbent comprises a zeolite of a faujasite crystalline structure containing Li+ and at least one of NH+ and H+ as essential cations, and has a nitrogen adsorption characteristic represented by specific correlation between the number of associated Li+ ions per unit lattice of a zeolite crystal and the amount of adsorbed nitrogen per unit lattice of the zeolite crystal. An air separation method employs the aforesaid nitrogen selective adsorbent for separation between nitrogen and oxygen by selective adsorption of nitrogen in air.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 13, 2004
    Assignee: Air Water, Inc.
    Inventors: Jin-Bae Kim, Hisanao Jo, Haruo Yoshioka, Hiromi Kiyama
  • Patent number: 6752852
    Abstract: Methods and apparatus for reducing moisture content of fluids comprising moisture and a sulfur-containing compound are disclosed. The methods use an acid gas resistant molecular sieve, and the sulfur-containing compounds are preferably selected from the group consisting of carbondisulfide, carbonylsulfide, and compounds within the formula Y—S—X , wherein S is sulfur, and X and Y are the same or different and are independently selected from the group consisting of hydrogen, alkyl, aryl, oxygen, and alcohol. Compositions comprising the reduced moisture fluids are also described.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: June 22, 2004
    Assignee: American Air Liquide, Inc.
    Inventors: Tracey Jacksier, Karine Saint-Cyr
  • Patent number: 6733572
    Abstract: The present invention is a process for separating propylene and dimethylether from a mixture comprising propylene, dimethylether, and propane. The mixture is passed through a bed of an adsorbent comprising a porous crystalline material having (i) diffusion time constants for dimethylether and propylene of at least 0.1 sec−1, and (ii) a diffusion time constant for propane of than 0.02 of the diffusion time constants for dimethylether and propylene. The bed preferentially adsorbs propylene and dimethylether from the mixture. The adsorbed propylene and dimethylether are then desorbed from the bed.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: May 11, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sebastian C. Reyes, Krishnan V. Venkatesan, Gregory J. DeMartin, John H. Sinfelt, Karl G. Strohmaier, Jose Guadalupe Santiesteban
  • Patent number: 6730142
    Abstract: In a process for separating propylene from a mixture comprising propylene and propane, the mixture is passed through a bed of an adsorbent comprising a porous crystalline material having (i) a diffusion time constant for propylene of at least 0.1 sec−1, when measured at a temperature of 373° K and a propylene partial pressure of 8 kPa, and (ii) a diffusion time constant for propane, when measured at a temperature of 373° K and a propane partial pressure of 8 kPa, less than 0.02 of said diffusion time constant for propylene. The bed preferentially adsorbs propylene from the mixture. The adsorbed propylene is then desorbed from the bed either by lowering the pressure or raising the temperature of the bed.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: May 4, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Venkatesan V. Krishnan, Gregory J. DeMartin, John H. Sinfelt, Karl G. Strohmaier, Jose G. Santiesteban
  • Patent number: 6723154
    Abstract: Air in a compressed air system is cleaned by consecutively passing the air through a pre-filter, silica gel with large pores, silica gel with fine pores, a molecular sieve, and a fine filter.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: April 20, 2004
    Assignee: Haldex Brake Products AB
    Inventors: Mats Olsson, Mats-Orjan Pogen