Plural Pressure Varying Steps (e.g., Pressure Swing Adsorption, Etc.) Patents (Class 95/96)
  • Patent number: 7582138
    Abstract: Apparatus and methods of supplying a highly enriched oxygen gas steam on board an aircraft. The gas stream is generated by an oxygen concentrator which concentrates atmospheric air by using at least one adsorber. The adsorber is made of a faujasite zeolite and has a Si/Al ratio between 1 and 1.5. The faujasite zeolite is also exchanged with silver by about 10%. Once generated, the gas stream is supplied to the airways of a person onboard an aircraft.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: September 1, 2009
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Stéphane Lessi, Nicolas Schmutz
  • Publication number: 20090211441
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from methane (“CH4”) in streams containing both carbon dioxide and methane utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from natural gas streams preferably for sequestration of at least a portion of the carbon dioxide present in the natural gas.
    Type: Application
    Filed: January 23, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman, Jose G. Sentiesteben
  • Publication number: 20090214407
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from nitrogen (“N2”) in streams containing both carbon dioxide and nitrogen utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from combustion gas (e.g., flue gas) streams preferably for sequestration of at least a portion of the carbon dioxide produced in combustion processes.
    Type: Application
    Filed: January 23, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20090211442
    Abstract: In various implementations, various feed gas streams which include hydrogen and carbon monoxide may be processed for conversion to product streams. For example, the feed gas stream may be processed using the Fischer-Tropsch process or a methanol synthesis process. Unconverted hydrogen and carbon monoxide can be recycled at high recovery and/or inert components removed to prevent build-up in the recycle system by using an arrangement of pressure swing adsorption systems designed to recover impure product gas streams.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 27, 2009
    Applicant: GTLPETROL LLC
    Inventor: Rodney J. Allam
  • Publication number: 20090216059
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20090214902
    Abstract: Disclosed embodiments concern adsorptive gas bulk separation systems and methods that may be advantageously less expensive to utilize than some in the prior art. Embodiments of the present invention concern processing a feed gas source, typically comprising at least one fuel gas component and at least one diluent, using a displacement purge adsorptive separator apparatus comprising at least one adsorbent bed, at least one purge gas source for purge regeneration of the at least one adsorbent bed, and a product conduit for supplying upgraded gas product. The feed gas typically is supplied to the displacement purge adsorptive separator apparatus at substantially the ambient pressure of the feed gas source. The displacement purge adsorptive separator apparatus is operable to adsorb at least a portion of the at least one diluent component from the feed gas stream to produce an upgraded gas.
    Type: Application
    Filed: June 15, 2006
    Publication date: August 27, 2009
    Inventors: Aaron M. Pelman, Surajit Roy, Sean Patrick Mezei
  • Publication number: 20090178558
    Abstract: A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 16, 2009
    Inventors: Joseph T. Hupp, Karen L. Mulfort, Randall Q. Snurr, Youn-Sang Bae
  • Patent number: 7556670
    Abstract: A method and system of coordinating an intensifier and sieve beds. At least some of the illustrative embodiments are methods comprising coordinating control of an intensifier with cycles of a sieve bed fluidly coupled to the intensifier such that there is at least one low pressure stroke of the intensifier and at least one high pressure stroke of the intensifier during a fill cycle of the sieve bed.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: July 7, 2009
    Inventors: Alonzo C. Aylsworth, Charles R. Aylsworth
  • Patent number: 7550030
    Abstract: The present invention generally relates to vacuum pressure swing adsorption (VPSA) processes and apparatus to recover carbon dioxide having a purity of approximately ?90 mole % from streams containing at least carbon dioxide and hydrogen (e.g., syngas). The feed to the CO2 VPSA unit can be at super ambient pressure. The CO2 VPSA unit produces three streams, a H2-enriched stream, a H2-depleted stream and a CO2 product stream. When the CO2 VPSA unit is installed between an SMR/shift reactor and a H2 PSA unit, hydrogen recovery is expected to be increased by extracting CO2, thereby increasing hydrogen partial pressure in the H2 PSA feed. The recovered CO2 can be further upgraded, sequestered or used in applications such as enhanced oil recovery (EOR).
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: June 23, 2009
    Assignee: Praxair Technology, Inc.
    Inventor: Ravi Kumar
  • Publication number: 20090151560
    Abstract: Pressure swing adsorption (PSA) assemblies and hydrogen-producing fuel processing assemblies and/or fuel cell systems including the same. The PSA assemblies include, or are utilized with, combustion fuel stream supply systems that are adapted to regulate the flow of a byproduct stream from the PSA assembly for delivery to a heating assembly for use as a combustible fuel stream, such as to maintain at least a hydrogen-producing region of the fuel processing system at a hydrogen-producing temperature or range of temperatures. In some embodiments, the combustion fuel stream supply system is configured to ensure that the supply of combustible fuel from the PSA assembly to the heating assembly contains at least a sufficient fuel value, such as to maintain at least the hydrogen-producing region at or within a predetermined hydrogen-producing temperature or range of temperatures.
    Type: Application
    Filed: September 2, 2008
    Publication date: June 18, 2009
    Applicant: IDATECH, LLC
    Inventors: Patton M. Adams, Travis A. Bizjak, James A. Givens
  • Publication number: 20090151558
    Abstract: A gas purifier of the present invention includes a purifier in which a gas-purifying agent is packed, wherein a gas is fed into the purifier, and impurities in the gas are removed by a thermal swing adsorption method, in which an amount A of the gas-purifying agent is determined such that an impurities-removing capacity possessed by half of the amount A of the gas-purifying agent is equal to the total amount of impurities in the gas to be purified in one purification step, and the amount of the gas-purifying agent packed in the purifier is the amount A or more.
    Type: Application
    Filed: June 14, 2006
    Publication date: June 18, 2009
    Inventors: Morimitsu Nakamura, Masato Kawai
  • Publication number: 20090151559
    Abstract: Methods and systems are provided where a production gas stream including natural gas and carbon dioxide is separated downhole using dual reflux pressure swing adsorption with the natural gas being produced and the carbon dioxide being directed for downhole storage (sequestration).
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Sandeep Verma, Terizhandur S. Ramakrishnan
  • Publication number: 20090120284
    Abstract: An active adsorbent pollutant reducing system includes a canister containing activated carbon, a pump and a series of valves connected to the canister and the pump. The valves and pump of the system are controlled so that vapor/air in the ullage of a gasoline storage tank is pumped to the canister/adsorbent material when tank pressure reaches a first level with vapor being adsorbed and air being discharged to atmosphere. When a second tank pressure level, lower than the first tank pressure level, is achieved, the valves are controlled to reconfigure the pump and canister so that continued pump operation pulls a vacuum on the canister resulting in adsorbed gasoline vapor being purged from the adsorbent material and returned to the storage tank. Tank pressure, HC content in the vapor flow and canister weight can be used for control of the system.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 14, 2009
    Inventor: Rodger P. Grantham
  • Patent number: 7527670
    Abstract: This invention comprises an adsorption process for the removal of at least N2O from a feed gas stream that also contains nitrogen and possibly CO2 and water. In the process the feed stream is passed over adsorbents to remove impurities such as CO2 and water, then over an additional adsorbent having a high N2O/N2 separation factor. In a preferred mode the invention is an air prepurification process for the removal of impurities from air prior to cryogenic separation of air. An apparatus for operating the process is also disclosed.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: May 5, 2009
    Assignee: Praxair Technology, Inc.
    Inventors: Mark William Ackley, Himanshu Saxena, Gregory William Henzler, Jeffert John Nowobilski
  • Patent number: 7520916
    Abstract: A method of operating a fuel cell system includes providing a fuel inlet stream into a fuel cell stack, operating the fuel cell stack to generate electricity and a hydrogen containing fuel exhaust stream, separating at least a portion of hydrogen contained in the fuel exhaust stream using partial pressure swing adsorption, and providing the hydrogen separated from the fuel exhaust stream to a hydrogen storage vessel or to a hydrogen using device.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: April 21, 2009
    Assignee: Bloom Energy Corporation
    Inventors: James F. McElroy, John E. Finn, M. Douglas LeVan, Swaminathan Venkataraman, Fred Mitlitsky
  • Publication number: 20090095154
    Abstract: A rotary cylinder valve comprises a valve body, a valve cylinder rotationally mounted within the valve body, and first, second, third and fourth valve seats coupled to the valve body. The valve cylinder has a first position in which dual independent flow paths connect the first valve seat with the second valve seat, and connect the third valve seat with the fourth valve seat. The valve cylinder is rotatable to a second position in which the dual independent flow paths connect the first valve seat with the fourth valve seat, and connect the third valve seat with the second valve seat. The valve seats form seals against the valve cylinder, such that no flow path connects the first valve seat with the third valve seat.
    Type: Application
    Filed: October 12, 2007
    Publication date: April 16, 2009
    Applicant: Hamilton Sundstrand Corporation
    Inventor: Michael R. Barone
  • Publication number: 20090071333
    Abstract: PSA process for oxygen production comprising (a) providing an adsorber having a first layer of adsorbent selective for water and a second layer of adsorbent selective for nitrogen, wherein the heat of adsorption of water on the adsorbent in the first layer is equal to or less than about 14 kcal/mole at water loadings less than about 0.05 mmol per gram; (b) passing a feed gas comprising at least oxygen, nitrogen, and water successively through the first and second layers, adsorbing water in the first layer of adsorbent, and adsorbing nitrogen in the second layer of adsorbent, wherein the mass transfer coefficient of water in the first layer is in the range of about 125 to about 400 sec?1 and the superficial contact time of the feed gas in the first layer is between about 0.08 and about 0.50 sec; and (c) withdrawing a product enriched in oxygen from the adsorber.
    Type: Application
    Filed: November 21, 2008
    Publication date: March 19, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Matthew James LaBuda, Timothy Christopher Golden, Roger Dean Whitley
  • Publication number: 20090071332
    Abstract: The use of rapid cycle pressure swing adsorption having a cycle time of less than 30 s for increasing the hydrogen concentration in hydrogen-containing steams, from a hydrogen source, such as a stream reforming unit.
    Type: Application
    Filed: January 23, 2006
    Publication date: March 19, 2009
    Inventors: Bal K. Kaul, John W. Viets, Mohsen N. Harandi, Julian A. Wolfenbarger, John Di-Yi Ou, David Stern
  • Patent number: 7500490
    Abstract: Rotary valve comprising (a) a rotor having a rotor face rotatable about an axis perpendicular to the rotor face, a plurality of openings, and at least one passage connecting at least one pair of the plurality of openings; (b) a stator having a stator face in sealing contact with the rotor face to form a planar rotary valve seal with an outer periphery, a plurality of openings in the stator face that are connected to respective passages through the stator, and wherein at least one of the passages through the stator is a stator vacuum passage directly connected to a vacuum pump; (c) a sealed valve chamber having an interior volume contiguous with the outer periphery of the rotary valve seal, which chamber is sealed from the atmosphere surrounding the rotary valve; and (d) a vacuum vent passage connected to the sealed valve chamber.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: March 10, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Glenn Paul Wagner
  • Patent number: 7491260
    Abstract: Method of operating a pressure swing adsorption system having a plurality of parallel adsorber vessels and a plurality of valves and gas manifolds adapted to introduce gas into each adsorber vessel and withdraw gas from each adsorber vessel in a cyclic series of sequential process steps. A leaking valve may be identified by (1) determining a value of an operating parameter that is a function of the mass of gas provided to a receiving adsorber vessel or withdrawn from an adsorber vessel during a selected process step, portion of a process step, or series of process steps; (2) determining the deviation of the value of the operating parameter from a predetermined reference value; and (3) using the magnitude and direction of the deviation to determine whether any valves are leaking.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: February 17, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Blaine Edward Herb, Charles Franklin Watson, Edward Landis Weist, Jr., Theodore Michael Sabram, Kuo-Kuang Hsu, Winfried Stephen Hoglen
  • Patent number: 7491261
    Abstract: An improved sieve bed design to manage breakthrough and the mass transfer zone by way of volumetric division. An empty space in the product end is separated from adsorbent-filled sieve space in the feed end by a mid-diffuser plate. The ratio of the empty product end void space to the adsorbent filled sieve space within a sieve bed may be determined by the relative percentages of the gasses to be separated and the bulk loading factor of the molecular sieve. A product end void space of the correct volume may ensure the maximum volume of nitrogen has been adsorbed before breakthrough occurs. In operation, pressure in the sieve bed empty space and sieve filled space may be equal at any instant. This contains breakthrough to the location of the mid-diffuser plate. The mass transfer zone may be static at the point of the mid-diffuser plate and as such, gas separation is a function of pressure within the bed.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: February 17, 2009
    Assignee: Wearair Oxygen, Inc.
    Inventors: John L. Warren, Anthony Hiscock
  • Patent number: 7485172
    Abstract: A method of providing gas to a system which separates from a pressurized supply gas, product gas, includes conditioning the supply gas by both cooling and drying the supply gas.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 3, 2009
    Assignee: Honeywell Normalair-Garrett (Holdings) Limited
    Inventors: Richard James Axe, Richard Grant Hunt
  • Publication number: 20090025553
    Abstract: Using zeolites as the active adsorbent, adsorbent laminates have been fabricated with various sheet supports. These adsorbent laminates have been successfully operated for oxygen enrichment at high PSA cycle frequencies, such as upwards of at least 150 cycles per minute. Methods for making suitable adsorbent laminates are described. The methods generally involve forming a slurry comprising a liquid suspending agent, an adsorbent and a binder. Laminates are made by applying the slurry to support material or admixing support material with the slurry. The slurry can be applied to support material using a variety of techniques, including roll coaters, split roll coaters, electrophoretic deposition, etc. One method for making laminates by mixing support material with the adsorbent slurry comprises depositing the slurry onto a foraminous wire, draining the slurry material, and pressing the material to form a ceramic adsorbent paper. Spacers can be formed on adsorbent laminates to space one laminate from another.
    Type: Application
    Filed: October 22, 2007
    Publication date: January 29, 2009
    Inventors: Bowie G. Keefer, Alain A. Carel, Brian G. Sellars, Ian S.D. Shaw, Belinda C. Larisch, David G. Doman, Frederick K. Lee, Andrea C. Gibbs, Bernard H. Hetzler, James A. Sawada, Aaron M. Pelman, Carl F. Hunter
  • Publication number: 20090013870
    Abstract: The present disclosure provides a method for separating and purifying a landfill gas stream. In one embodiment, the method includes a step of collecting a crude landfill gas stream which includes at least methane, carbon dioxide, oxygen, and nitrogen gases. The method also includes a step of separating the crude landfill gas stream into at least an intermediate landfill gas stream and a first waste gas stream using a membrane separation unit, wherein the intermediate landfill gas stream is enriched in methane and depleted in carbon dioxide relative to the crude landfill gas stream. The method further includes a step of separating the intermediate landfill gas stream into at least a final landfill gas stream and a second waste gas stream using a pressure swing adsorption separation unit, wherein the final landfill gas stream is enriched in methane and depleted in carbon dioxide, oxygen, and nitrogen relative to the intermediate landfill gas stream. In some embodiments.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 15, 2009
    Inventors: Cary V. Sorensen, Jeffrey R. Bailey
  • Publication number: 20090007782
    Abstract: The management of hydrogen in hydrogen-containing streams associated with petrochemical process units wherein the hydrogen-containing stream is subjected rapid cycle pressure swing adsorption to increase the concentration of hydrogen therein.
    Type: Application
    Filed: January 23, 2006
    Publication date: January 8, 2009
    Inventors: David L. Stern, Bal K. Kaul, John Di-Yi Ou, Dana L. Pilliod
  • Patent number: 7473299
    Abstract: System for producing an oxygen-rich gas comprising (a) a primary gas mover including a first and a second compressor, wherein the primary gas mover is characterized by a weight Wp; (b) a drive motor adapted to drive the first and second compressors; (c) a rechargeable power supply characterized by a weight, Wb; and (d) a pressure/vacuum swing adsorption unit adapted to separate the pressurized feed air into an oxygen-rich product at a product flow rate Fp and an oxygen-depleted waste gas, wherein the adsorption unit comprises a plurality of adsorber beds containing an adsorbent and characterized by a total adsorbent weight Wa; and wherein the combined weight, Wt, of the adsorbent, the primary gas mover, and the rechargeable power supply is characterized by the expression 0.75 Fp<Wt<2.02 Fp where Fp is in liters per min (at 23° C. and 1 atma pressure), and Wa, Wp, and Wb are in pounds.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: January 6, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Michael Occhialini, Roger Dean Whitley, Glenn Paul Wagner, Matthew James LaBuda, Craig E. Steigerwalt
  • Patent number: 7455717
    Abstract: In one aspect, a product gas concentrator is provided. In one embodiment, the apparatus may include: a first process separating adsorbable components from a source gaseous mixture, a second process providing concentrated product gas in a continuous output mode, a third process providing concentrated product gas in a pulsed output mode, and a fourth process selectively switching between the continuous and pulsed output modes. In another embodiment, the apparatus may include: a first process pressurizing a source gaseous mixture, a second process separating adsorbable components from the pressurized gaseous mixture, a product tank accumulating concentrated product gas for dispensing, an output path, a third process selecting a volume to be dispensed during a predetermined time, a pressure sensor monitoring pressure of the concentrated product gas, and a fourth process controlling flow of the concentrated product gas in response to the selected volume and the monitored pressure.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: November 25, 2008
    Assignee: Invacare Corporation
    Inventor: Thomas B. Sprinkle
  • Publication number: 20080282884
    Abstract: A process for the separation of one or more heavy hydrocarbon gases from a gas mixture containing heavy hydrocarbon gas components and methane. The process is conducted in swing adsorption apparatus containing adsorbent contactor having a plurality of flow channels and wherein 20 volume percent or less of the open pore volume of the contactors, is in the mesopore and macropore range.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Inventors: Bruce T. Kelley, Paul S. Northrop, Ronald R. Chance, Harry W. Deckman, Edward W. Corcoran, JR., Eugene R. Thomas
  • Publication number: 20080282883
    Abstract: Containerized gas separation system comprising (a) a container having an interior, an exterior, and an exterior volume defined by the exterior dimensions of the container and (b) a pressure swing adsorption system installed in the interior of the container and adapted to recover a product gas from a feed gas mixture, the pressure swing adsorption system being adapted to deliver the product gas at a product gas flow rate, wherein the ratio of the exterior volume of the container to the product gas flow rate is less than about 2000 ft3/(ton per day).
    Type: Application
    Filed: January 25, 2008
    Publication date: November 20, 2008
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: David Lester Rarig, Roger Dean Whitley, Matthew James LaBuda, James Michael Occhialini, Kevin Alan Lievre, Michael S. Yankovoy
  • Patent number: 7445663
    Abstract: An energy efficient oxygen concentrator in which a compressor applies pressurized air to at least two gas separating elements which will pass a flow of oxygen while blocking a flow of nitrogen. The gas separating elements are alternately cycled between a gas separating mode for producing oxygen enriched gas and a purge mode for purging nitrogen from the elements. According to the invention, the speed of the cycle time is increased as the oxygen enriched gas flow requirement is decreased below the maximum concentrator output. The higher cycle speed reduces the maximum compressor pressure to reduce energy consumption.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: November 4, 2008
    Assignee: Sunrise Medical HHG Inc.
    Inventors: Donald W. Hunter, Frank R. Frola
  • Patent number: 7445662
    Abstract: A valve assembly for use in a gas purification system having a plurality of vessels each having a first port opening and a second port opening. The gas purification system includes a first valve element having at least a first aperture to selectively connect a first port opening of a vessel to an outlet of the first valve element. The gas purification system also includes at least a second valve element having a second aperture to selectively connect a second port opening of a vessel to an input of the second valve element. Also provided is a drive mechanism configured to cause intermittent movement. The first and second valve elements are intermittently moved by the drive mechanism such that the intermittent movement changes the vessel connected to the second aperture and the vessel connected to the first aperture.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: November 4, 2008
    Assignee: Metso Automation USA, Inc.
    Inventor: David Bayreuther
  • Publication number: 20080264253
    Abstract: Processes comprising: providing a crude gas stream having a temperature not exceeding 40° C., the crude gas stream comprising hydrogen chloride and at least one organic impurity; condensing at least a portion of the at least one organic impurity from the crude gas stream at a temperature not exceeding 0° C. to form a prepurified gas stream and a condensate comprising condensed organic impurity; subjecting at least a portion of the prepurified gas stream to adsorption on an adsorption medium to provide a purified gas stream; and separating the condensate into at least a head gas stream comprising residual hydrogen chloride and a sump stream comprising at least a portion of the condensed organic impurity.
    Type: Application
    Filed: April 28, 2008
    Publication date: October 30, 2008
    Applicant: Bayer MaterialScience AG
    Inventors: Ole Brettschneider, Knud Werner
  • Patent number: 7442232
    Abstract: Adsorbents and methods of use thereof are provided. One representative, among others, includes an adsorbent having an alkali metal promoted, mixed trivalent layered double hydroxide (LDH) composition. When the mixed trivalent layered double hydroxide (LDH) composition is heated to a temperature ranging from about 300° C. to 450° C., an the adsorbent having an adsorption capacity of at least 0.8 millimoles of CO2 adsorbed per gram of adsorbent is formed.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: October 28, 2008
    Assignee: Georgia Tech Research Corporation
    Inventors: Mark G. White, Alexei V Iretski, Scott Jeffrey Weigel, Robert Ling Chiang, Jeffrey Richard Brzozowski
  • Patent number: 7442231
    Abstract: An electricity generation system is disclosed for utilization with a natural gas purification system. In one embodiment, a gas-driven engine which is substantially powered by a low-BTU gas produced in a natural gas purification process is mechanically coupled to an electric motor and is utilized to drive the electrical motor. The electric motor generates electrical energy that can be utilized to power substantially all or a portion of the purification process' electrical load. The generated electricity may be used to supply major or minor loads of the gas purification process.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: October 28, 2008
    Assignee: Syntroleum Corporation
    Inventor: J. Mark Landrum
  • Publication number: 20080257152
    Abstract: A packed bed of granulated porous glass is used to purify a gas mixture comprising two gases whose boiling points or sublimation points at one atmosphere are least 10° K apart.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Inventors: Frederick W. GIACOBBE, Elizabeth Giacobbe
  • Patent number: 7438745
    Abstract: A portable gas fractionalization apparatus that provides oxygen rich air to patients is provided. The apparatus is compact, lightweight, and low-noise. The components are assembled in a housing that is divided into two compartments. One compartment is maintained at a lower temperature than the other compartment. The lower temperature compartment is configured for mounting components that can be damaged by heat. The higher temperature compartment is configured for mounting heat generating components. An air stream is directed to flow from an ambient air inlet to an air outlet constantly so that there is always a fresh source of cooling air. The apparatus utilizes a PSA unit to produce an oxygen enriched product. The PSA unit incorporates a novel single ended column design in which all flow paths and valves can be co-located on a single integrated manifold. The apparatus also can be used in conjunction with a satellite conserver and a mobility cart.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: October 21, 2008
    Assignee: Inogen, Inc.
    Inventors: Geoffrey Frank Deane, Brenton Alan Taylor, Chung Ming Li
  • Publication number: 20080244972
    Abstract: The invention relates to a method for converting gaseous effluents based on hydrogen arising from at least two reactor units R1 and R2 consuming hydrogen. Said effluents have differing degrees of hydrogen purity. The different hydrogenous effluents are treated in a gas separation unit U for said different hydrogenous effluents, whereupon highly pure hydrogen can be obtained and can be used to feed an additional reactor unit R3. The unit U also produces a residual flow having a low degree of hydrogen purity which can be sent to the combustible gas network of the petrochemical installation.
    Type: Application
    Filed: October 19, 2004
    Publication date: October 9, 2008
    Inventors: Pascal Tromeur, Francois-Xavier Haulle
  • Publication number: 20080241052
    Abstract: Apparatus, method and system for delivering a sterile unit dose of ozone that may include concentrating oxygen from air, which can include pressurizing at least one zeolite chamber having at least one zeolite material where the at least one zeolite material selectively adsorbs a substantial amount of nitrogen and not a substantial amount of oxygen. An oxygen-ozone cell may be filled with substantially concentrated oxygen from the at least one zeolite chamber. The oxygen-ozone cell may then be sequestered. The oxygen-ozone cell may be removed and may be engaged with an ozone conversion unit. The ozone conversion unit may charge the substantially concentrated oxygen generating a predetermined concentration of ozone. The oxygen-ozone cell may be disengaged from the ozone conversion unit.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Inventors: David M. Hooper, Thomas Foster, Noel Henson
  • Publication number: 20080216652
    Abstract: A process and a device for separating hydrogen from a gas flow having an oxygen constituent, comprised primarily of hydrogen, nitrogen, oxygen, carbon dioxide, carbon monoxide, methane and/or other hydrocarbons, is disclosed. The gas flow is compressed in a multi-stage compression process and then cooled to room temperature by a heat exchanger. After a pre-adsorber, the gas flow is fed to a catalytic process for removing the oxygen. The catalytic reaction for removing the oxygen takes place exothermically. The gas flow is then cooled to room temperature via another heat exchanger and fed to a pressure swing adsorption process for hydrogen separation. The hydrogen is separated there from the residual gas.
    Type: Application
    Filed: March 5, 2008
    Publication date: September 11, 2008
    Applicant: Linde Aktiengesellschaft
    Inventors: Tobias KELLER, Paul LEITGEB, Werner LEITMAYR, Ulrike WENNING
  • Patent number: 7416569
    Abstract: A PSA mechanism has adsorption towers. Cleaning valves and off gas valves are connected to the adsorption towers. Valve positions of at least either the cleaning valves or the off gas valves are determined based on an operation suspension period of the PSA mechanism or internal conditions which vary depending on the operation suspension period.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: August 26, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hideaki Sumi, Hikaru Okada, Satoshi Hanai, Hiroshi Machida
  • Publication number: 20080196585
    Abstract: An improved process for the separation of carbon dioxide from the flue gas of an oxy-combustion power plant is provided. At least a first product stream and a second product stream are separated from a flue gas stream, wherein the pressure of the first product stream and the pressure of the second product stream are different. The first product stream is warmed and vaporized.
    Type: Application
    Filed: April 2, 2007
    Publication date: August 21, 2008
    Inventor: Bao HA
  • Patent number: 7402287
    Abstract: An apparatus and method for producing hydrogen. The apparatus includes a fuel processor, a purification unit and a system controller. The controller determines a calculated flow of reformate from the fuel processor and operates the purification unit based on the calculated flow. The calculated flow is derived from a process model of the fuel processor and known feed(s) to the fuel processor. The calculated flow of reformate is used to control the flow of reformate to adsorbent beds within the purification unit and can be used to control other materials flows within the apparatus. Means for reducing fluctuations in the pressure and/or flow rate of reformate flowing from the fuel processor to the purification unit are also disclosed. The purity of the hydrogen produced can be maintained by adjusting the operation of the purification unit in response to changes in reformate composition, pressure and/or flow rate.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: July 22, 2008
    Assignee: Texaco Inc.
    Inventors: W. Spencer Wheat, Hongqiao Sun, Bhaskar Balasubramanian, Vesna R. Mirkovic
  • Patent number: 7399341
    Abstract: A process for the purification of hydrogen based gas mixtures utilizing zeolite X wherein the particle size distribution of the zeolite X powder has a coefficient of variation from about 15% to about 30%.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 15, 2008
    Assignee: UOP LLC
    Inventors: Kirit M. Patel, Henry Rastelli, Martha S. Buchan, Henry L. Griffith, Michele S. Herron
  • Patent number: 7396387
    Abstract: The present invention generally relates to large capacity (e.g., greater than 350 tons/day O2) vacuum pressure adsorption (VPSA) systems and processes that employ a single train including four beds, at least one feed compressor feeding two beds simultaneously at any given instant in time, and a single vacuum pump. The compressor(s) and the vacuum pump can be utilized 100% of the time. Use of product quality gas for purging is avoided, with about 10-20% improvement in O2 productivity and 5-10% reduction in capital cost expected.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 8, 2008
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Andrew Rosinski
  • Patent number: 7393382
    Abstract: Pressure swing adsorption (PSA) assemblies with temperature-based breakthrough detection systems, as well as to hydrogen-generation assemblies and/or fuel cell systems containing the same, and to methods of operating the same. The detection systems are adapted to detect a measured temperature associated with adsorbent in an adsorbent bed of a PSA assembly and to control the operation of at least the PSA assembly responsive at least in part thereto, such as responsive to the relationship between the measured temperature and at least one reference temperature. The reference temperature may include a stored value, a previously measured temperature and/or a temperature measured elsewhere in the PSA assembly. In some embodiments, the reference temperature is associated with adsorbent downstream from the adsorbent from which the measured temperature is detected.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: July 1, 2008
    Assignee: IDATECH LLC
    Inventor: James A. Givens
  • Publication number: 20080148937
    Abstract: The present invention relates generally to adsorbents for use in pressure swing adsorption (PSA) prepurification processes. The invention more particularly relates to the design of adsorbent zones to be used in PSA prepurification processes that are expected to provide for extensions in PSA cycle time, thereby reducing blowdown loss and operating costs associated with the process. One particular embodiment of the present invention includes a first adsorption zone containing activated alumina and a second adsorption zone of an alumina-zeolite mixture or composite adsorbent in which the volume of the first zone does not exceed 50% of the total volume of the first and second zone.
    Type: Application
    Filed: May 1, 2007
    Publication date: June 26, 2008
    Inventors: Salil Uday Rege, Jeffert John Nowobilski, Mark William Ackley
  • Publication number: 20080141860
    Abstract: A process for increasing hydrogen recovery can include: (a) sending a first gas from a hydrocarbon conversion zone at a first pressure to a hydrogen purification zone; (b) combining a second gas from a particle transport vessel at a second pressure less than the first pressure with a tail gas from the hydrogen purification zone to create a combined stream; and (c) recycling at least a portion of the combined stream to an inlet of the hydrogen purification zone.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 19, 2008
    Inventor: Edward R. Morgan
  • Publication number: 20080083331
    Abstract: Pressure swing adsorption process for producing oxygen comprising (a) providing at least one adsorber vessel having a first layer of adsorbent adjacent the feed end of the vessel and a second layer of adsorbent adjacent the first layer, wherein the surface area to volume ratio of the first layer is in the range of about 5 to about 11 cm?1; (b) introducing a pressurized feed gas comprising at least oxygen, nitrogen, and water into the feed end, adsorbing at least a portion of the water in the adsorbent in the first layer, and adsorbing at least a portion of the nitrogen in the adsorbent in the second layer, wherein the superficial contact time of the pressurized feed gas in the first layer is between about 0.08 and about 0.50 sec; and (c) withdrawing a product gas enriched in oxygen from the product end of the adsorber vessel.
    Type: Application
    Filed: October 4, 2006
    Publication date: April 10, 2008
    Inventors: Matthew James LaBuda, Timothy Christopher Golden, Roger Dean Whitley, Craig E. Steigerwalt
  • Patent number: 7354562
    Abstract: A process for producing a high temperature COx-lean product gas from a high temperature COx-containing feed gas, includes: providing a sorption enhanced reactor containing a first adsorbent, a shift catalyst and a second adsorbent; feeding into the reactor a feed gas containing H2, H2O, CO and CO2; contacting the feed gas with the first adsorbent to provide a CO2 depleted feed gas; contacting the CO2 depleted feed gas with the shift catalyst to form a product mixture comprising CO2 and H2; and contacting the product mixture with a mixture of second adsorbent and shift catalyst to produce the product gas, which contains at least 50 vol. % H2, and less than 5 combined vol. % of CO2 and CO. The adsorbent is a high temperature adsorbent for a Sorption Enhanced Reaction process, such as K2CO3 promoted hydrotalcites, modified double-layered hydroxides, spinels, modified spinels, and magnesium oxides.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: April 8, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Hon Sing Ying, Shankar Nataraj, Jeffrey Raymond Hufton, Jianguo Xu, Rodney John Allam, Sarah Jane Dulley
  • Patent number: 7350521
    Abstract: Oxygen concentrator system having a portable oxygen generator unit adapted to generate a non-humidified oxygen-rich gas and a stationary base unit adapted to generate a humidified oxygen-rich gas, wherein the portable oxygen generator unit and the stationary base are adapted for operation in a coupled mode and an uncoupled mode. The portable oxygen generator unit includes a first flow coupling adapted to receive the humidified oxygen-rich gas when operating in the coupled mode, piping means adapted to combine the non-humidified oxygen-rich gas and the humidified oxygen-rich gas to form a humidified oxygen-rich gas product, and an oxygen-rich gas product delivery port. The stationary base unit is adapted to recharge a rechargeable power supply system in the portable oxygen generator unit when the units are coupled.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: April 1, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Roger Dean Whitley, Glenn Paul Wagner, Matthew James LaBuda