Split Or Plural Inlets Patents (Class 96/211)
  • Patent number: 11364450
    Abstract: The invention relates to a gas/liquid separation column extending mainly along a vertical axis and comprising an external wall delimiting an internal space in which are arranged at least one first contact member in which the liquid and the gas are brought into contact and at least one dispensing device configured to collect the liquid resulting from the first contact member and to distribute it to a second contact member. At least one box for separating a two-phase fluid is arranged in the internal space of the column between the first contact member and the dispensing device against the wall of the column fed by a duct which passes through a wall of the separation box.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: June 21, 2022
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Elia Cordier, Antony Correia, Vincent Faucher, Philippe Grigoletto
  • Patent number: 8778065
    Abstract: In a bubble-column vapor mixture condenser, a fluid source supplies a carrier-gas stream including a condensable fluid in vapor phase. The condensable fluid in liquid form is contained as a bath in a chamber in each stage of the condenser, and the carrier gas is bubbled through the bath to condense the condensable fluid into the bath. Energy from condensation is recovered to a coolant in a conduit that passes through the liquid in the stages of the condenser. The bubble-column vapor mixture condenser can be used, e.g., in a humidification-dehumidification system for purifying a liquid, such as water.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 15, 2014
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum & Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa Hamed Elsharqawy
  • Patent number: 8608840
    Abstract: A choke assembly comprises an inlet (48) for a multiphase fluid stream, the stream comprising a first relatively heavy fluid phase and a second relatively light fluid phase; a first fluid outlet (116); a choke element (22) disposed between the inlet and the first fluid outlet operable to control the flow of fluid between the inlet and the first fluid outlet; a separation chamber (40, 114) disposed to provide separation of phases in the fluid stream upstream of the choke element; and a second outlet (118) for removing fluid from the separation cavity. The choke assembly is of particular use in the control of fluid streams produced from a subterranean well, in particular oil and gas produced from a subsea well.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: December 17, 2013
    Assignee: Cameron International Corporation
    Inventors: Hans Paul Hopper, Derek Meek
  • Patent number: 8591635
    Abstract: A separator may include a body, an inlet portion, and an outlet conduit. The body may include a conical interior surface defining a conical cavity. The cavity may have a first outlet at a tip of the body. The inlet portion may be connected to the body and may include an outer surface, a cylindrical inner surface, and a first inlet passage extending between the outer surface and the inner surface. The inner surface may be defined by the longitudinal axis. The first inlet passage may be positioned relative to the inner surface such that a fluid flow through the first inlet passage is generally tangent to the inner surface. The outlet conduit may extend through the inlet portion and into the cavity. The outlet conduit may include a second inlet passage disposed inside of the cavity and a second outlet disposed outside of the body and the inlet portion.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: November 26, 2013
    Assignee: Chrysler Group LLC
    Inventor: E. Timothy Pawl
  • Patent number: 8496740
    Abstract: An atmospheric oil, water and gas separator designed for oilfield applications having ground level inlet, internal water leg, internal piping, a degassing chamber, a horizontal inlet fluid swirl wing distributor that creates centrifugal spiraling of inlet fluids to slow and increase flow residence time, a horizontal swirl wing baffle above the inlet that minimizes oil re-entrainment by preventing turbulence at the oil-water interface, an inverted upper spreader that prevents solids plugging and performance deterioration, an oil conduit extending from the lower surface of the inverted upper spreader to the oil layer to prevent re-entrainment of separated oil in the inlet water turbulent zone, an externally adjustable slide tube for the water leg spillover weir tube, engineered water and oil spillover weirs that prevent separator upsets and overflows, and a water leg adjuster providing fine tuning of the height of the water leg from outside the vessel without shutdown.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 30, 2013
    Inventor: Will D. Ball, IV
  • Patent number: 8460438
    Abstract: A choke assembly comprises an inlet (48) for a multiphase fluid stream, the stream comprising a first relatively heavy fluid phase and a second relatively light fluid phase; a first fluid outlet (116); a choke element (22) disposed between the inlet and the first fluid outlet operable to control the flow of fluid between the inlet and the first fluid outlet; a separation chamber (40, 114) disposed to provide separation of phases in the fluid stream upstream of the choke element; and a second outlet (118) for removing fluid from the separation cavity. The choke assembly is of particular use in the control of fluid streams produced from a subterranean well, in particular oil and gas produced from a subsea well.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: June 11, 2013
    Assignee: Cameron International Corporation
    Inventors: Derek Meek, Hans Paul Hopper
  • Patent number: 8439206
    Abstract: A cyclone apparatus for separating a mixture containing at least one fluid and a further constituent based on the densities of the mixture constituents. The apparatus includes a first hollow pressure vessel having an overflow plate positioned at an overflow end of the first hollow pressure vessel and an end plate for sealing the overflow plate. The cyclone apparatus also comprises an underflow plate positioned at an under-flow end of the first hollow pressure vessel and a hollow pressure vessel with one end being sealed against the under-flow plate and another end being closed. The overflow plate and the end plate are shaped such that when they are brought together they form separate adjacent overflow compartments between them. The underflow plate and the second hollow pressure vessel are shaped such that when they are brought together they form separate adjacent under-flow compartments between them which correspond to the overflow compartments.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: May 14, 2013
    Assignee: Merpro Tortek Limited
    Inventors: Stephen Beedie, Mark Wolf
  • Patent number: 8366802
    Abstract: The cyclone is for separating gas from a gas laden liquid stream by pressure reduction of the liquid stream. The cyclone has a cylindrical casing, having a tangentially directed inlet arrangement for the gas laden liquid stream, a lower outlet line for liquid and an upper outlet line for vapor and gas. The inlet arrangement is connected to a common supply source (BLPR), and has at least two insertion pipes. The flow in at least one of these insertion pipes is controlled by at least one valve that depends upon an order of flow from the common supply source to maintain a flow velocity above a critical value.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 5, 2013
    Assignee: Metso Paper Sweden AB
    Inventor: Krister Olsson
  • Patent number: 8349059
    Abstract: A number of pocketed apparatus for separating various materials are described. A pocketed cyclonic separator that includes a cyclone chamber, which includes interior chamber walls, an inlet connected to the cyclone chamber, and one or more pocket separators, located on the interior chamber walls, is described. A substance may be introduced through the inlet into the cyclone chamber so as to create a rotational force sufficient to generate a cyclone in the cyclone chamber. Forces generated by the cyclone will cause heavier material in the substance to move towards the interior chamber walls when in use. The one or more pocket separators define one or more pockets that trap heavier material in the substance when in use.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: January 8, 2013
    Assignee: Peerless Manufacturing Co.
    Inventor: Dani Fadda
  • Patent number: 8308856
    Abstract: The present invention relates to an air separator for an extracorporeal blood circuit for separating out air from a fluid flowing through the air separator, comprising an air separation chamber having at least one inflow passage and at least one outflow passage. It further relates to an external functional apparatus, a blood circuit, and a treatment apparatus.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: November 13, 2012
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Christoph Brueckner, Martin Lauer, Manfred Weis
  • Patent number: 8043420
    Abstract: A fluid tank includes a tank main body that contains a fluid and a bubble removing device that is provided inside the main body and removes bubbles in the fluid. The main body includes a partition and a delivery port through which the fluid is fed to outside. The bubble removing device has an outflow port through which the fluid from which the bubbles have been removed flows to the inside of the main body and a bubble exhaust port through which the bubbles which have been removed are discharged to the inside of the main body. The delivery port is provided adjacent to the outflow port relative to the partition. The partition partitions the inside of the main body into a side in which the outflow port and the delivery port are provided and a side of the bubble exhaust port.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 25, 2011
    Assignees: Komatsu Ltd., Komatsu Utility Co., Ltd.
    Inventors: Akiko Konishi, Tatsuro Nohara, Katsumi Yokoo, Shotaro Ishii, Noboru Kanayama
  • Patent number: 7985283
    Abstract: A system for at least partially de-aerating a hydraulic fluid in a transmission includes a plurality of transmission components, a first reservoir for receiving de-aerated hydraulic fluid, a first pump in communication with the first reservoir and operable to pump the de-aerated hydraulic fluid to the plurality of transmission components, a second reservoir for receiving aerated hydraulic fluid from the plurality of transmission components, a second pump in communication with the second reservoir and operable to pump the aerated hydraulic fluid from the second reservoir, and a separator for receiving the aerated hydraulic fluid from the second pump and operable to de-aerate the aerated hydraulic fluid and communicate the de-aerated hydraulic fluid to the first reservoir.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: July 26, 2011
    Assignee: Gm Global Technology Operations LLC
    Inventor: Pete R Garcia
  • Patent number: 7883570
    Abstract: An apparatus and method for separating components of a fluid containing liquid and gas comprises a housing having at least one elongate channel. Each channel has an inlet end, an outlet end and rounded walls enabling the fluid flowing through the channel to flow substantially free of turbulent flow. Each channel defines a spiral path through the housing and acts to separate the fluid flowing through the channel into a gas-depleted outer portion and a liquid-depleted inner portion. The apparatus includes a liquid outlet port for the gas-depleted outer portion and a gas outlet port for the liquid-depleted inner portion. The housing may include a mixing chamber in fluid communication with the inlet end of the channel. The mixing chamber may include a surface the fluid impacts against. The apparatus may include a chamber at the outlet end of the channel. The chamber may have a gas outlet port closer to the outlet end of the channel than the liquid outlet port.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: February 8, 2011
    Assignee: Star Oil Tools Inc.
    Inventor: Marcel Obrejanu
  • Patent number: 7713335
    Abstract: A device for separating gas from liquid includes a housing having an inlet for receiving a flow of liquid and gas. The inlet is positioned such that the flow of liquid and gas enters the housing in a direction substantially tangential to a circumference of an inner surface of the housing. The housing also includes a first outlet for discharging an at least partially gaseous flow from the housing and a second outlet for discharging an at least partially deaerated flow of liquid from the housing. The device also includes a gas separating element disposed inside the housing downstream from the inlet and upstream from the second outlet. The gas separating element forms at least one opening to permit liquid to pass and form the at least partially deaerated flow and to permit the at least partially gaseous flow to separate from the at least partially deaerated flow.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: May 11, 2010
    Assignee: Caterpillar Inc.
    Inventors: Rhett Dakota Ringenberger, Jason Frederick Jackson, Catalin Mugurel Tiru
  • Patent number: 7572323
    Abstract: The invention relates to a fluid separating device with a lower section with a fluid feeding device and a liquid discharging device, an upper section with a fluid feeding device and a gas discharging device, a contact device which is constructed in such a manner that gas, which rises from the lower section into the upper section, comes into contact with liquid which sinks from the upper section into the lower section. Thereby, the rising gases can be depleted of components which are soluble in said liquid. Furthermore, a measuring device for determining the quantity of liquid and/or the alterations thereof is provided.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: August 11, 2009
    Assignee: SFC Smart Fuel Cell AG
    Inventors: Jens Müller, Volker Harbusch, Markus Huber, Christian Böhm, Kurt Rothkopf, Manfred Stefener
  • Publication number: 20090107335
    Abstract: An air trap for a blood circuit and method for removing air from blood in a dialysis unit. The air trap may include a blood inlet supply line, a blood outlet supply line, and a container having an approximately spherical internal wall, an inlet at a top end of the container connected to the blood inlet supply line, and an outlet at a bottom end of the container connected to the blood outlet supply line. The inlet may be offset from a vertical axis of the approximately spherical internal wall such that blood entering the container is directed to flow in a spiral-like path. The inlet port may be arranged to introduce blood into the container in a direction that is approximately tangential to the approximately spherical inner wall of the container and/or in a direction that is approximately perpendicular to the vertical axis of the container.
    Type: Application
    Filed: August 27, 2008
    Publication date: April 30, 2009
    Applicant: DEKA Products Limited Partnership
    Inventors: Michael J. Wilt, Jason A. Demers
  • Patent number: 7517387
    Abstract: A description is given of a gas separation device for a physiological fluid, comprising a containing body (6) having at least a first inlet aperture (7) for a physiological fluid, positioned with a tangential direction of access, at least one outlet aperture (9) for the said fluid, spaced apart from the said inlet aperture, and a guide element (17) housed within the said body. The guide element (17) has a continuous active surface (15) designed to contact and guide the said fluid and delimits, together with the containing body (6), a first annular chamber (20) into which the first inlet aperture (7) opens directly.
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: April 14, 2009
    Assignee: Gambro Lundia AB
    Inventors: Jacques Chevallet, Nicolas Semenzato, Alain Frugier, Francesco Ribolzi
  • Publication number: 20090038475
    Abstract: The present invention relates to a method for improving the efficiency of gas removal wherein gas-enriched process liquid (2) is introduced tangentially into a vertical essentially cylindrical vessel (1) and thereafter removed at the bottom of the vessel. By means of centrifugal force gas (2d) is brought to enrich in a part (2a, 2b) of the liquid (2). This part (2a) of liquid (2) having an enriched gas content (2c) is redirected to at least one vertical means (7) arranged centrally in the vessel (1), and separately removed therefrom. The present invention also relates to a de-gassing arrangement in an arrangement including at least one vertical essentially cylindrical vessel (1). Said vessel (1) includes at least one tangentially arranged inlet (4) for gas-enriched liquid and at least one discharge (6) for de-gassed liquid, which discharge is arranged at the lower portion of the vessel (1).
    Type: Application
    Filed: October 18, 2005
    Publication date: February 12, 2009
    Inventor: Paul Olof Meinander
  • Patent number: 7290607
    Abstract: An apparatus for separating the gaseous phase from a mixture of fluids used during the subsurface intervention in production or injection wells. The device includes a main pipe (T) provided externally with a helix (E) having a longitudinal opening (F) whose edge (B), which is downstream from the helical flow of liquid (1) and inert gas (2), has a spiral shape pointing towards the center of pipe (T).
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: November 6, 2007
    Assignee: Innovative Engineering Systems Ltd.
    Inventor: Juan Jose Tovar Depablos
  • Patent number: 7255728
    Abstract: Apparatus and method for degassing liquids particularly cationic monomers. Fluid comprising liquid to be degassed together with sweep gas is admitted tangentially into a column (10) and forced down the column by a tubular baffle (16) which defines, with the inner wall of the column, an annulus (18) that is closed at its top (20). After passing to the bottom of the annulus the fluid forms an even film over the inner surface of the column and gas disengaging from the liquid can rise up the column while liquid accumulates at the bottom of the column. To assist the disengagement of the gas from the liquid the column is preferably of increasing cross section towards the bottom so that the thickness of the film is also reduced.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: August 14, 2007
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd.
    Inventors: Jonathan Heath Veal, Martin David Powell, Simon Broughton, Gareth Ian Naylor
  • Patent number: 7105044
    Abstract: A fluid tank fluid is provided which includes a bubble removing device provided therein to remove bubbles from the fluid. The bubble removing device includes a cyclone chamber for generating a swirling current in the fluid flowing therethrough to separate bubbles from the fluid. At least one outflow port is provided through which the fluid from which the bubbles have been separated flows from the cyclone chamber. And an exhaust port is provided through which the bubbles separated from the fluid are driven from the cyclone chamber.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: September 12, 2006
    Assignee: Komatsu Ltd.
    Inventors: Akiko Konishi, Shotaro Ishii, Kouji Chikaishi, Noboru Kanayama, Tatsuro Nohara
  • Patent number: 6481499
    Abstract: This is a high-efficiency item of equipment, for example for a well bottom for separating out gas from a liquid/gas mixture, based on the effects of flows of the cascade and segregated types. It consists basically of a sedimentation vessel whose lateral surface has holes in the upper portion, enclosing (i) a discharge pump, (ii) a suction pipe and (iii) the lower end of a production tubing. The vessel contains helicoidal surfaces for achieving segregated-type flow. A significant part of separation takes place above the level of the separator, in a medium in which there is a predominance of gas and the flow is in the form of a cascade.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: November 19, 2002
    Assignee: Petroleo Brasileiro S.A.
    Inventor: Divonsir Lopes
  • Patent number: 6322616
    Abstract: A gas separator connectable between the seating nipple/pump and the mud anchor of a well production line takes advantage of gravitational, shear and centrifugal forces to detrain gas from the formation fluid. An outer cylindrical tube is concentrically secured by upper and lower couplings in relation to an inner cylindrical tube having an axial flow passage and a plurality of radial perforations. The upper coupling is adapted for connection to the seating nipple/pump and the lower coupling is adapted for connection to the mud anchor. The couplings each have a passage therethrough to extend the inner tube axial flow passage in fluid communication between the pump and the mud anchor. The outer cylindrical tube has a plurality of inwardly downwardly centrifugally oriented passages for admitting liquid entrained with gas into an annulus between the tubes and for causing the admitted liquid to flow in a downward spiral in the annulus.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: November 27, 2001
    Assignee: SDH, Inc.
    Inventors: Howard L. Kennedy, Gary W. Lewis
  • Patent number: 6026655
    Abstract: An accumulator for a refrigeration system includes a housing having a cylindrical sidewall and upper and lower end walls. Inlet and outlet tubes are provided in the housing for directing refrigerant into and out of the accumulator. The inlet tube includes a first end fluidly connected to an inlet fitting at the upper end wall of the housing, and a second end located proximate the lower end wall of the housing. A longitudinal orifice is provided along the entire length of the inlet tube, from a location above the level of stored liquid refrigerant in the accumulator, to a location below the level of stored liquid. The orifice is oriented to direct fluid tangentially along the inside surface of the side wall. The inlet tube is formed by a strip of material where the side edges of the strip are brought together to define the opening, or the side edges can be brought into contact along a seam and a plurality of openings can be provided along the tube.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: February 22, 2000
    Assignee: Parker-Hannifin Corporation
    Inventors: Gary E. Griffin, Robert F. Prayne
  • Patent number: 5902378
    Abstract: The efficiency of progressing cavity pumps is drastically reduced if the liquid being pumped contains large volumes of gas. To alleviate this problem a gas separator is provided which can be attached to the suction of a downhole pump to remove gas from the liquid being pumped prior to the liquid entering the pump inlet. The separator has an elongate housing having an annular chamber with guides which direct the liquid gas mixture to flow in an annular path from the inlet to the outlet end. During this flow centrifugal forces act to displace the gas content to the central region from which it is removed via a separate central gas outlet so that liquid delivered to the pump inlet is greatly reduced in its gas content.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: May 11, 1999
    Inventor: Marcel Obrejanu
  • Patent number: 5849065
    Abstract: A device for separating gas bubbles out of medical fluids, in particular blood, has a substantially cylindrical chamber, an inlet connection arranged in the longitudinal direction of the chamber, an outlet connection and a flow-guide member attached to the inlet connection and having a plurality of flow channels, which extend in a space curve out of the longitudinal direction of the chamber in a direction running substantially tangential to the inner wall of the chamber. An orifice, which is sealed by a hydrophobic membrane, is provided in the cover part of the chamber. Since the outlet orifices of the flow channels are arranged directly underneath the cover part, the membrane is circumflowed by the inflowing fluid, avoiding the formation of dead zones. The device makes it possible to separate out air bubbles with a substantial degree of reliability, without the danger of the hydrophobic membrane becoming obstructed from contact with the blood.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: December 15, 1998
    Assignee: Fresenius AG
    Inventor: Ralf Wojke
  • Patent number: 5827357
    Abstract: The separator includes a vertical cylindrical pressure vessel having elliptical top and bottom heads. A mechanical device, referred to as a vortex tube cluster of vertical tubes, is mounted in the upper section of the vessel chamber, spaced above the bottom head to define a lower chamber section for fluid and solids separation. Pressurized drilling fluid returns are directed tangentially into the vortex tubes and a subsequent centrifugal action is generated. Contained gas separates and forms a gas vortex which exits upwardly from the vortex tubes and vessel top. The liquids and solids discharge into the vessel lower chamber section where solids settle by gravity to the bottom. The solids are withdrawn from the base of the vessel by a slurry pump. The oil and water components of the fluid layer also separate by gravity and are individually removed from the vessel.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: October 27, 1998
    Assignee: Northland Production Testing Ltd.
    Inventor: Raymond Richard Farion
  • Patent number: 5676717
    Abstract: An apparatus for primary air/oil separation for an oil-flooded air compressor, the apparatus includes a tank having a sidewall, a bottom end and a top end. The sidewall and ends define a tank separation chamber. The apparatus further includes a flow conduit for flowing an air/oil mixture from the compressor into the tank separation chamber. A primary separator element is located in the chamber and provides primary separation of the air/oil mixture. The primary separator element is flow connected to the flow conduit and includes a body with at least two discharge ends and an arcuate elbow flow connected to each of the at least two discharge ends. Each elbow has an outer peripheral portion and an inner peripheral portion. As the air/oil mixture is forced through the separator element, the oil is drawn to the outer peripheral portion and the compressed air is located in the inner peripheral portion. In this way, primary separation of the oil and the air is achieved.
    Type: Grant
    Filed: November 13, 1995
    Date of Patent: October 14, 1997
    Assignee: Ingersoll-Rand Company
    Inventors: Larry H. Cope, John R. Owings, Jerry W. Riddle
  • Patent number: 5514206
    Abstract: A gas/air or bubble separator is disclosed, particularly for use with supplying air/gas or bubble free coating liquid to a paper coater. The separator includes three cast elements containing three formed chambers, a distribution chamber at the top of the device which supplies incoming liquid to a plurality of separators which operate on the vortex principle, a liquid collection chamber for collecting the essentially or substantially air/gas or bubble free liquid at the bottom of the device, and an air/gas bubble collection chamber above the vortex separators for collecting the gas/air or bubble containing liquid. These chambers are of cast construction and made of stainless steel so that no weld need be used. The device has essentially inline flow for the bulk of the liquid from inlet to outlet and clean streamline design with no dead spaces to prevent accumulations, build ups and problems associated with the same.
    Type: Grant
    Filed: April 15, 1994
    Date of Patent: May 7, 1996
    Assignee: Consolidated Papers, Inc.
    Inventors: James L. Hoogesteger, Wayne A. Damrau