Liquid Contact Within Whirler Or Rotator Patents (Class 96/314)
  • Patent number: 10668488
    Abstract: Provided is a cyclone dust collector with a higher particle collection efficiency than before. The cyclone dust collector of the present invention includes a nozzle assembly including a plurality of the nozzles arranged within a first cross section defined by a plane containing a center axis of the cylindrical case and part of the spiral flow path intersecting with each other, the nozzles being adapted to spray the water mist in a direction along the first cross section.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 2, 2020
    Assignee: TRINITY INDUSTRIAL CORPORATION
    Inventor: Takashi Hashimoto
  • Patent number: 10625276
    Abstract: Provided is a cyclone dust collector with a higher particle collection efficiency than before. The cyclone dust collector includes an inner wall being arranged on an edge portion of a first cross section defined by a plane containing a center axis of the cylindrical case and part of the spiral flow path intersecting with each other and being adapted to make the part of the flow path narrower and a first nozzle that sprays the water mist toward the air passing through a constricted part being part of the spiral flow path made narrower by the inner wall.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: April 21, 2020
    Assignee: TRINITY INDUSTRIAL CORPORATION
    Inventor: Takashi Hashimoto
  • Patent number: 8915990
    Abstract: A refining system for refining a feed gas comprising hydrocarbons and hydrogen sulfide having a first concentration of hydrogen sulfide including a first part for producing a stream of a first processed feed gas, and a second part for producing a second stream of a second processed feed gas from the stream of the first processed feed gas using a separation process for H2S removal.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: December 23, 2014
    Assignee: Twister B.V.
    Inventors: Marco Betting, Robert Petrus van Bakel, Cornelis Antonie Tjeenk Willink
  • Patent number: 8858680
    Abstract: The present invention is directed to a method and a system for separating oxygen from air. A compressible air stream that contains oxygen is mixed in a substantially co-current flow with an incompressible fluid stream comprising an incompressible fluid in which oxygen is capable of being preferentially absorbed. Rotational velocity is imparted to the mixed streams, separating an incompressible fluid in which at least a portion of the oxygen is absorbed from other compressible components of the air stream. The compressible air stream may be provided at a stream velocity having a Mach number of at least 0.1.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: October 14, 2014
    Assignee: Shell Oil Company
    Inventors: Frederik Arnold Buhrman, Jingyu Cui, Mahendra Ladharam Joshi, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8858679
    Abstract: The present invention is directed to a method and a system for separating hydrogen or helium from gas having a mixture of gaseous components. A compressible feed stream that contains at least one target compressible component and hydrogen or helium is mixed in a substantially co-current flow with an incompressible fluid stream comprising an incompressible fluid in which the target component(s) is/are capable of being preferentially absorbed. Rotational velocity is imparted to the mixed streams, separating an incompressible fluid in which at least a portion of the target component is absorbed from a compressible product stream containing the hydrogen or helium. The compressible feed stream may be provided at a stream velocity having a Mach number of at least 0.1.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: October 14, 2014
    Assignee: Shell Oil Company
    Inventors: Frederik Arnold Buhrman, Jingyu Cui, Mahendra Ladharam Joshi, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8597404
    Abstract: The present invention is directed to low emission power plant. A compressible feed stream is provided that is derived from a power production unit, where the compressible feed stream contains at least one target compressible component and at least one non-target compressible component, is mixed in a substantially co-current flow with an incompressible fluid stream comprising an incompressible fluid in which the target component(s) is/are capable of being preferentially absorbed. Rotational velocity is imparted to the mixed streams, separating an incompressible fluid in which at least a portion of the target component is absorbed from a compressible product stream containing the non-target compressible component(s). The compressible feed stream may be provided at a stream velocity having a Mach number of at least 0.1.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Frederik Arnold Buhrman, Jingyu Cui, Mahendra Ladharam Joshi, Stanley Nemec Milam, Scott-Lee Wellington
  • Patent number: 8491706
    Abstract: An apparatus for recovery of solids from a vapor, the apparatus including: a vessel comprising a cylindrical portion on top of an angled portion; a vapor inlet located in the cylindrical portion for introducing a solid-vapor mixture tangentially to the cylindrical portion; at least one inlet nozzle disposed in a top of the vessel for spraying a hydrocarbon fluid into the vessel; an indirect heat exchange device disposed concentrically within the cylindrical portion, thereby providing an annulus for vapor and hydrocarbon flow; a heat exchange device disposed at an exterior of the angled portion; an outlet located at a bottom of the angled portion to recover the vapor having a reduced solids content and a solid-hydrocarbon mixture. Also disclosed are processes to clean an oil vapor using such an apparatus.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: July 23, 2013
    Assignee: M-1 L.L.C.
    Inventor: Richard Bingham
  • Patent number: 8268049
    Abstract: Vapor-liquid contacting apparatuses comprising both a primary absorption zone and a secondary absorption zone comprising a plurality of vortex contacting stages are described. The apparatuses provide improved heat and mass transfer between vapor and liquid phases in processes such as absorption, to selectively solubilize contaminants (e.g., acid gases) from an impure vapor (e.g., sour natural gas). Vortex contacting stage(s) in a zone of vapor-liquid contacting, such as a secondary or finishing absorption zone, are used following bulk absorption in a primary or main absorption zone.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 18, 2012
    Assignee: UOP LLC
    Inventor: Lev Davydov
  • Patent number: 8241405
    Abstract: A wet scrubber for scrubbing a fluid. The wet scrubber may include an inlet for receiving the fluid and a vortex chamber, in communication with the inlet, for causing at least a portion of the fluid to circulate. The wet scrubber may also include at least one diffuser for exhausting the fluid from the vortex chamber, the diffuser configured to substantially prevent fluid exhausted from the diffuser from recirculating back into the diffuser. A paint booth and a method of scrubbing a fluid are also provided.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: August 14, 2012
    Assignee: The University of Kentucky Research Foundation
    Inventor: Abraham J. Salazar
  • Patent number: 8210506
    Abstract: The invention is a heat exchanger that transfers heat directly between fluids which are in direct contact with each other rather than being separated by a heat conductive wall. Gas and liquid exchange heat when the gas is moved into and through a mixing chamber, and is directed to form a high speed, forced vortex gas flow. The liquid is sprayed into the mixing chamber to form droplets traveling with and mixing with the vortex gas flow. As the gas and liquid droplets move through the mixing chamber together in the vortex flow, they exchange thermal energy by direct contact. The mixing chamber length is designed so that the gas and the liquid droplets approach thermal equilibrium as the gas-liquid mixture moves into a separation chamber. Within the separation chamber, the centrifugal force of the continuing vortex movement of the gas stream separates the liquid from the gas stream and forms a layer of liquid on the separation chamber wall.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 3, 2012
    Assignee: Advanced Cooling Technologies, Inc.
    Inventor: Michael C. Ellis
  • Publication number: 20120145009
    Abstract: A wet type dust collecting apparatus of a vacuum cleaner is provided. The wet type dust collecting apparatus of a vacuum cleaner includes a first separating unit configured to filter out and discharge dust by rotating air which is inlet via a first air inlet, and a plurality of a second centrifugal separating units configured to filter out dust from the air which is discharged from the first separating unit, and configured to eliminate dust from the inlet air via water which is filled inside of the second centrifugal separating units.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Inventors: Min-Ha KIM, Joung-Soo PARK, Heung-Jun PARK, Sung-Tae JOO, Dong-Houn YANG
  • Publication number: 20110001045
    Abstract: A substance detection device, including a chemical substance analyzer, including an ion mobility spectrometer (IMS), a desorber, a conduit, and a membrane. The membrane extends across a cross-section of the conduit, and the membrane is positioned to have a desorber side in gas communication with the desorber and an analysis side opposite the desorber side. The substance detection device can be configured to direct a portion of a chemical substance to the desorber through the conduit so that at least a portion of the entrained chemical substance is transferred to the membrane by interacting with the desorber side of the membrane. The membrane is adapted to diffuse at least a portion of the chemical substance transferred to the membrane through the membrane to the analysis side. The device also includes a particle separator including a protuberance extending into a collection chamber of the particle separator.
    Type: Application
    Filed: December 11, 2008
    Publication date: January 6, 2011
    Inventor: Stephen Richardson
  • Patent number: 7458564
    Abstract: The invention relates to equipment for use in the removal of relatively fine particulates from a first substance, using a second substance.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: December 2, 2008
    Assignee: Mittal Steel South Africa Limited
    Inventors: Richard George Paxton, Michael Fellows-Smith, Friedrich Michael Mindszenty, Christian Alexander Mindszenty
  • Patent number: 6716269
    Abstract: A gas centrifuge operating to separate gases of differing chemical composition and molecular weight by a centrifugal force field. Such a centrifuge is operable to separate methane and carbon dioxide, and to produce torque, and a cascade of such centrifuges is operable to concentrate produced streams of carbon dioxide and methane, and to produce torque. A compact centrifugal gas processing system incorporating the gas centrifuge with other centrifugal components, is also provided.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: April 6, 2004
    Assignee: Energent Corporation
    Inventors: Emilio Castano Graff, Lance G. Hays
  • Patent number: 6638343
    Abstract: A waste gas treatment system has a primary cooling section provided at a stage subsequent to a decomposition treatment section in which a waste gas is subjected to decomposition treatment at high temperature. The primary cooling section has a liquid spray part for spraying a liquid on the treated gas from the decomposition treatment section. A secondary cooling section cools the treated gas sprayed with the liquid in the primary cooling section to reduce the volume of the treated gas. Further, a particle collecting section injects a liquid into the treated gas cooled in the secondary cooling section to collect fine particles contained in the treated gas.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: October 28, 2003
    Assignee: Ebara Corporation
    Inventors: Kohtaro Kawamura, Rikiya Nakamura, Kazutaka Okuda, Keiichi Ishikawa, Takeshi Tsuji
  • Patent number: 6322617
    Abstract: A scrubbing apparatus for separating gaseous or particulate contents, especially from flue gas, using a plurality of spin spray nozzles arranged such that adjacent spray nozzles have a different spin. Double spin spray nozzles can be used that produce oppositely aimed spray jets of different spin.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: November 27, 2001
    Assignees: Lechler GmbH & Co. KG, Dieter Wurz
    Inventors: Dieter Wurz, Lothar Bendig, Juergen Speier
  • Patent number: 6270544
    Abstract: A cyclone separator for separating a solid particulate from the gas or liquid medium is described. The separator is provided with a housing (H), an outlet (4) for discharging the solid particulate separated from the medium, a pipe (13) for evacuating the clean fluid from the housing (H) and a swirling means capable of imparting vortical motion to the medium. The swirling means is formed with a plurality of slit-like openings (16) arranged on the periphery thereof.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: August 7, 2001
    Assignee: Vortex Ecological Technologies Ltd.
    Inventors: Yury Mencher, Matitiahu Fichman
  • Patent number: 6209856
    Abstract: The present invention is to provide a gas-liquid processing apparatus having a high contact efficiency of a gas and a liquid and a high reaction efficiency at a low production cost. A static type fluid mixer includes a passage pipe for the passage of a fluid and a spiral blade body arranged in the passage pipe with the longitudinal direction substantially perpendicularly but being absent in the center portion of the passage pipe. A liquid and a gas are supplied into the static type fluid mixer and a fluid is returned from the bottom portion of the static type fluid mixer to the upper portion via the pipe for the fluid circulation. The fluid is maintained in the static type fluid mixer at a pressured state higher than the atmospheric pressure.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: April 3, 2001
    Inventor: Hisao Kojima
  • Patent number: 6187080
    Abstract: An exhaust gas treatment apparatus for treating exhaust gas generated in semiconductor manufacturing processes. It includes a main pipe, a gas vortex means, a water vortex means, an U pipe and a discharge pipe. The main pipe transforms the exhaust gases to waste powder which are discharged out through the U pipe and the discharge pipe. The gas vortex means and water vortex means are located below the main pipe for generating annular and even downward gas flow and water flow at the outlet of the main pipe for preventing reflux of waste powder from entering into the main pipe. Waste powder thus won't deposit around the outlet. Scraper in the main pipe won't be stuck or deformed. Waste powder may be discharged out through the U pipe and discharge pipe smoothly and efficiently.
    Type: Grant
    Filed: August 9, 1999
    Date of Patent: February 13, 2001
    Assignee: United Microelectronics Inc.
    Inventors: Chung Ping-Chung, Lu Tsung-Lin, Chi-Hsien Chen, Jing-Yi Huang, Ju-Long Lee, Hunter Chung, Chien-Feng Chen
  • Patent number: 6156102
    Abstract: A process of separating water from ambient air involves a liquid desiccant to first withdraw water from air and treatment of the liquid desiccant to produce water and regenerated desiccant. Water lean air is released to the atmosphere. Heat generated in the process is recycled. The drying capacity, or volume of water produced, of the system for a given energy input is favored over the production of dried air.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: December 5, 2000
    Assignee: Fantom Technologies Inc.
    Inventors: Wayne Ernest Conrad, Helmut Gerhard Conrad
  • Patent number: 6042636
    Abstract: A method and apparatus of cooling incinerator exhaust gas for a cleaning treatment of high temperature exhaust gas discharged from an incinerator of refuse and/or waste in a post-step are provided. A spray cooling chamber includes a chamber having a lower end portion formed into a nearly cylindrical shape of an inverted conical shape, a gas distribution chamber equipped with a revolving blade, arranged at an upstream side of the chamber, a sprayer of a cooling liquid arranged at central upper portion of the chamber, a dust exhaust port arranged at the lower end portion of the chamber, and an exhaust pipe arranged on the chamber. Waste heat recovery from exhaust gas is limited to a temperature range capable of suppressing generation of dioxins, and high temperature exhaust gas is rapidly cooled, particularly at a temperature drop rate such that the vicinity of 300.degree. C. is dropped in a short time within 1 second, so that exhaust concentration of dioxins from an incinerator plant can be decreased to 0.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: March 28, 2000
    Assignee: Ohkawara Kakohki Co., Ltd.
    Inventors: Shizuo Aishima, Takahito Goshi, Masaaki Ohkawara, Toshiyuki Tanaka, Takashi Itoh, Kazukuni Furukawa, Masashi Fujii, Gentaro Nemoto
  • Patent number: 5945039
    Abstract: The present invention is to provide a gas-liquid processing apparatus having a high contact efficiency of a gas and a liquid and a high reaction efficiency at a low production cost. A static type fluid mixer, includes a passage pipe for the passage of a fluid and a spiral blade body arranged in the passage pipe with the longitudinal direction substantially perpendicularly but being absent in the center portion of the passage pipe. A liquid and a gas are supplied into the static type fluid mixer and a fluid is returned from the bottom portion of the static type fluid mixer to the upper portion via the pipe for the fluid circulation. The fluid is maintained in the static type fluid mixer at a pressured state higher than the atmospheric pressure.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: August 31, 1999
    Inventor: Hisao Kojima