With Distinct Switching Device Patents (Class 977/708)
  • Patent number: 8826529
    Abstract: A device includes a substrate (308) and a metallic layer (336) formed over the substrate (308) with a deposition process for which the metallic layer (336) is characterizable as having a pre-determinable as-deposited defect density. As a result of a fabrication process, the defect density of the metallic layer (336) is reduced relative to the pre-determinable as-deposited defect density of the same layer (336) or another layer having like composition and which is formed under like deposition conditions. In a related method, a substrate (308) is provided and a removable layer (330) is formed over the substrate (308). A metallic layer (336) is formed over the removable layer (330) and is patterned and etched to define a structure over the removable layer (330). The removable layer (330) is removed, and the metallic layer (336) is heated for a time beyond that necessary for bonding of a hermetic sealing cap (340) thereover.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Andrew Joseph Detor, Reed Corderman, Christopher Keimel, Marco Aimi
  • Patent number: 8692231
    Abstract: A functional molecular element exhibiting its function under the operation of an electrical field is provided. A compound is used in which a pendant molecule, formed by 4-pentyl-4?-cyanobiphenyl, exhibiting positive dielectric constant anisotropy or a dipole moment along the direction of the long axis of the molecule, is covalently bonded to an electrically conductive linear or film-shaped principal-axis molecule having a conjugated system. The pendant molecule is changed in its orientation on application of an electrical field to change the conformation to switch the electrical conductivity of the electrically conductive principal-axis molecule.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: April 8, 2014
    Assignees: Sony Corporation, Sony Deutschland G.m.b.H.
    Inventors: Eriko Matsui, Nobuyuki Matsuzawa, Akio Yasuda, Oliver Harnack
  • Patent number: 8450833
    Abstract: A semiconductor device is formed with sub-resolution features and at least one additional feature having a relatively larger critical dimension using only two masks. An embodiment includes forming a plurality of first mandrels, having a first width, and at least one second mandrel, having a second width greater than the first width, overlying a target layer using a first mask, forming sidewall spacers along the length and width of the first and second mandrels, forming a filler adjacent each sidewall spacer, the filler having the first width, removing the filler adjacent sidewall spacers along the widths of the first and second mandrels using a second mask, removing the sidewall spacers, and etching the target layer between the filler and the first and second mandrels, thereby forming at least two target features with different critical dimensions.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 28, 2013
    Assignee: GlobalFoundries Inc.
    Inventor: Ryoung-han Kim
  • Patent number: 8331138
    Abstract: A configuration bit array including a hybrid electromechanical and semiconductor memory cell, and circuitry for addressing and controlling read, write, and erase accesses of the memory.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: December 11, 2012
    Assignee: Agate Logic, Inc.
    Inventors: David Richard Trossen, Malcolm John Wing
  • Patent number: 8138501
    Abstract: Disclosed is a switching element provided with a gate dielectric film and an active layer disposed in contact with the gate dielectric film. The active layer includes carbon nanotubes, and the gate dielectric film includes non-conjugated polymer containing an aromatic ring in a side chain.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: March 20, 2012
    Assignee: NEC Corporation
    Inventors: Satoru Toguchi, Masahiko Ishida, Hiroyuki Endoh
  • Patent number: 8101948
    Abstract: In a switching element using, for the active layer, a carbon nanotube (CNT) dispersed film which can be manufactured at low temperatures, the interaction between the CNT and the surface of the gate insulating film is insufficient. For this reason, a problem of such a switching element is that the amount of CNT fixed in the channel region is insufficient, resulting in insufficient uniformity. In the switching element of the exemplary embodiment, a gate insulating film is formed of a nonconjugated polymer material containing, in the main chain, an aromatic group and a substituted or unsubstituted alkylene or alkyleneoxy group having 2 or more carbon atoms as repeating units. As a result, the interaction between the CNT and the surface of the gate insulating film is enhanced while maintaining the flexibility of the gate insulating film, and the amount of CNT fixed in the channel region can be increased.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: January 24, 2012
    Assignee: NEC Corporation
    Inventors: Satoru Toguchi, Hiroyuki Endoh
  • Patent number: 7990751
    Abstract: A nanogap switching element is equipped with an inter-electrode gap portion including a gap of a nanometer order between a first electrode and a second electrode. A switching phenomenon is caused in the inter-electrode gap portion by applying a voltage between the first and second electrodes. The nanogap switching element is shifted from its low resistance state to its high resistance state by receiving a voltage pulse application of a first voltage value, and shifted from its high resistance state to its low resistance state by receiving a voltage pulse application of a second voltage value lower than the first voltage value. When the nanogap switching element is shifted from the high resistance state to the low resistance state, a voltage pulse of an intermediate voltage value between the first and second voltage values is applied thereto before the voltage pulse application of the second voltage value thereto.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 2, 2011
    Assignees: Funai Electric Advanced Applied Technology Research Institute Inc., National Institute of Advanced Industrial Science and Technology, Funai Electric Co., Ltd.
    Inventors: Yuichiro Masuda, Shigeo Furuta, Tsuyoshi Takahashi, Tetsuo Shimizu, Yasuhisa Naitoh, Masayo Horikawa
  • Patent number: 7973374
    Abstract: Embodiments relate to a semiconductor device and a method for fabricating the same. According to embodiments, a semiconductor device may include a metal film spaced from a semiconductor substrate at a predetermined interval and in which a plurality of etching holes are formed. A bottom metal pattern disposed on and/or over a space between the semiconductor substrate and metal film and top metal pattern formed on and/or over the bottom metal pattern may be provided. A pillar may be formed on and/or over the semiconductor substrate and may support one side of a low surface of the bottom metal pattern. A pad may be formed on and/or over the semiconductor substrate, and an air layer corresponding to the bottom metal pattern may be inserted therein. According to embodiments, a pyro-electric switch transistor using a bi-metal with different coefficients of thermal expansion may be provided.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 5, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Eun-Soo Jeong
  • Patent number: 7947542
    Abstract: A method for making a thin film transistor, the method comprising the steps of: (a) providing a carbon nanotube array and an insulating substrate; (b) pulling out a carbon nanotube film from the carbon nanotube array by using a tool; (c) placing at least one carbon nanotube film on a surface of the insulating substrate, to form a carbon nanotube layer thereon; (d) forming a source electrode and a drain electrode; wherein the source electrode and the drain electrode being spaced therebetween, and electrically connected to the carbon nanotube layer; and (e) covering the carbon nanotube layer with an insulating layer, and a gate electrode being located on the insulating layer.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: May 24, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 7940557
    Abstract: A configuration bit array including a hybrid electromechanical and semiconductor memory cell, and circuitry for addressing and controlling read, write, and erase accesses of the memory.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 10, 2011
    Assignee: Agate Logic, Inc.
    Inventors: David Richard Trossen, Malcolm John Wing
  • Publication number: 20110037045
    Abstract: According to one embodiment, a nonvolatile memory device includes a substrate, a first electrode, a second electrode, and a memory. The first electrode is provided on the substrate. The second electrode crosses on the first electrode. The memory portion is provided between the first electrode and the second electrode. At least one of an area of a first memory portion surface of the memory portion opposed to the first electrode and an area of a second memory portion surface of the memory portion opposed to the second electrode is smaller than an area of a cross surface of the first electrode and the second electrode opposed to each other by the crossing.
    Type: Application
    Filed: September 7, 2010
    Publication date: February 17, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Fukumizu, Naoya Hayamizu, Makiko Tange
  • Patent number: 7885103
    Abstract: A configuration bit array including a hybrid electromechanical and semiconductor memory cell, and circuitry for addressing and controlling read, write, and erase accesses of the memory.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: February 8, 2011
    Assignee: Agate Logic, Inc.
    Inventors: David Richard Trossen, Malcolm John Wing
  • Patent number: 7816662
    Abstract: An RF nanoswitch which can reduce a loss in RF signal. The RF nanoswitch includes a first electrode unit connected to one terminal of a driving power supply, a second electrode connected to the other terminal of the driving power supply, and a dielectric material selectively coming into contact with at least one of the first electrode unit and the second electrode, depending on whether or not power is applied from the driving power supply.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-ha Shim, Kuang-woo Nam, Seok-chul Yun, In-sang Song
  • Patent number: 7667995
    Abstract: A method for creating a logic state for teleporting quantum information using a single photon is described. The method includes receiving a photon with an initial polarization and causing a first semiconductor crystal to have a first spin orientation. The photon interacts with the first semiconductor crystal for producing a resulting polarization dependent upon the first spin orientation. Causing the photon to interact with the first semiconductor crystal generates a maximally entangled state.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: February 23, 2010
    Assignees: University of Iowa Research Foundation, The Regents of the University of California
    Inventors: Michael N. Leuenberger, Michael E. Flatté, David D. Awschalom
  • Patent number: 7652337
    Abstract: Nanotube-based switching elements and logic circuits. Under one aspect, a switching element includes an input node; an output node; a nanotube channel element comprising a ribbon of nanotube fabric; and a control electrode disposed in relation to the nanotube channel element to form an electrically conductive channel between the input node and the output node, wherein the electrically conductive channel at least includes the nanotube channel element. Under another aspect, a switching element includes an input node; an output node; a nanotube channel element comprising at least one electrically conductive nanotube, the nanotube being clamped at both ends by a clamping structure; and a control electrode disposed in relation to the nanotube channel element to form an electrically conductive channel between the input node and the output node, wherein the electrically conductive channel at least includes the nanotube channel element.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: January 26, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7649769
    Abstract: Circuit arrays having cells with combinations of transistors and nanotube switches. Under one embodiment, cells are arranged as pairs with the nanotube switching elements of the pair being cross coupled so that the set electrode of one nanotube switching element is coupled to the release electrode of the other and the release electrode of the one nanotube switching element being coupled to the set electrode of the other. The nanotube articles are coupled to the reference line, and the source of one field effect transistor of a pair is coupled to the set electrode to one of the two nanotube switching elements and the source of the other field effect transistor of the pair is coupled to the release electrode to the one of the two nanotube switching elements.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: January 19, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Frank Guo
  • Patent number: 7638790
    Abstract: An RF nanoswitch which can reduce a loss in RF signal. The RF nanoswitch includes a first electrode unit connected to one terminal of a driving power supply, a second electrode connected to the other terminal of the driving power supply, and a dielectric material selectively coming into contact with at least one of the first electrode unit and the second electrode, depending on whether or not power is applied from the driving power supply.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-ha Shim, Kuang-woo Nam, Seok-chul Yun, In-sang Song
  • Patent number: 7628959
    Abstract: A hydrogen gas sensor and/or switch fabricated from arrays nanowires composed of metal or metal alloys that have stable metal hydride phases. The sensor and/or switch response times make it quite suitable for measuring the concentration of hydrogen in a flowing gas stream. The sensor and/or switch preferably operates by measuring the resistance of several metal nanowires arrayed in parallel in the presence of hydrogen gas. The nanowires preferably comprise gaps or break junctions that can function as a switch that closes in the presence of hydrogen gas. Consequently, the conductivity of the nanowires of the sensor and/or switch increases in the presence of hydrogen.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: December 8, 2009
    Assignee: The Regents of the University of California
    Inventors: Reginald Mark Penner, Erich C. Walter, Fred Favier
  • Patent number: 7609086
    Abstract: A control circuit includes a crossbar array having input columns and output rows configured to store first stored data in the form of high or low resistance states. The input columns are connected to a common electrical input and the output rows are connected to a common summing circuit. The crossbar control circuit may be implemented in a control system to provide for adjustment of the control system to changes in environmental conditions.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 27, 2009
    Inventor: Blaise Laurent Mouttet
  • Patent number: 7495350
    Abstract: Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at macroscopic level. Nanometer-scale beams are provided that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. Automatic switches may be added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. The output energy of millions of these devices may be efficiently summed together.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: February 24, 2009
    Assignee: CJP IP Holdings, Ltd.
    Inventors: Joseph F. Pinkerton, John C Harlan
  • Patent number: 7459933
    Abstract: A method including storing two-dimensional binary data in the form of high or low resistance states into a crossbar array with a programmable material layer and transforming the two-dimensional binary data into one-dimensional analog data via the crossbar array.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: December 2, 2008
    Inventor: Blaise Laurent Mouttet
  • Patent number: 7447828
    Abstract: A method includes providing a crossbar array including a programmable material layer, wherein the crossbar array is configured to function as part of a signal processing system and reprogramming at least one impedance value of the programmable material layer formed at crosspoints of the crossbar array to change the signal processing system.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: November 4, 2008
    Inventor: Blaise Laurent Mouttet
  • Publication number: 20080186756
    Abstract: Nanotube-based switching elements with multiple controls and circuits made from such. A switching element includes an input node, an output node, and a nanotube channel element having at least one electrically conductive nanotube. A control structure is disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. The control structure includes a control electrode and a release electrode, disposed on opposite sides of the nanotube channel element. The control and release may be used to form a differential input, or if the device is constructed appropriately to operate the circuit in a non-volatile manner. The switching elements may be arranged into logic circuits and latches having differential inputs and/or non-volatile behavior.
    Type: Application
    Filed: January 9, 2008
    Publication date: August 7, 2008
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7391235
    Abstract: A device including a crossbar array including a programmable material layer and an array of op-amps connected to outputs of the crossbar array.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: June 24, 2008
    Inventor: Blaise Laurent Mouttet
  • Patent number: 7302513
    Abstract: A signal processing system is taught to be formed by combining a crossbar array with programming circuitry and signal input circuitry so as to provide a linear transformation from a set of input signals to a set of output signals. Applications of such a system to waveform generation, signal filtering, communications, and pattern recognition are explained. In one embodiment the crossbar array of the signal processing system may be a molecular nanowire crossbar array in which the crossbar interconnects are addressed via dual arrays of scanning probe tips so as to provide an interface between the molecular crossbar electronics and conventional solid state electronics used in the programming and signal processing circuitry.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: November 27, 2007
    Inventor: Blaise Laurent Mouttet
  • Patent number: 7297557
    Abstract: A method of attaching a molecular layer to a substrate includes attaching a temporary protecting group(s) to a molecule having a molecular switching moiety with first and second connecting groups attached to opposed ends thereof. The temporary protecting group(s) is attached to the first and/or second connecting group so as to cause the opposed ends of the switching moiety to exhibit a difference in hydrophilicity such that one of the ends remains at at least one of a water/solvent interface and a water/air interface, and the other end remains in air during a Langmuir-Blodgett (LB) process. An LB film is formed on the interface. The temporary protecting group(s) is removed. The substrate is passed through the LB film to form the molecular layer chemically bonded on the substrate. The difference in hydrophilicity between the opposed ends causes formation of a substantially well-oriented, uniform LB film at the interface.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: November 20, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sean X. Zhang, Zhang-lin Zhou, Yong Chen
  • Patent number: 7203789
    Abstract: An architecture for computing includes nanometer scale crossbar switches configured to perform a logical function in response to a sequence of pulses that encode logic values in the nanometer scale crossbar switches as impedances.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: April 10, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Gregory Stuart Snider
  • Patent number: 7186381
    Abstract: A hydrogen gas sensor and/or switch fabricated from arrays nanowires composed of metal or metal alloys that have stable metal hydride phases. The sensor and/or switch response times make it quite suitable for measuring the concentration of hydrogen in a flowing gas stream. The sensor and/or switch preferably operates by measuring the resistance of several metal nanowires arrayed in parallel in the presence of hydrogen gas. The nanowires preferably comprise gaps or break junctions that can function as a switch that closes in the presence of hydrogen gas.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 6, 2007
    Assignee: Regents of the University of California
    Inventors: Reginald Mark Penner, Erich C. Walter, Fred Favier
  • Patent number: 7075141
    Abstract: A four terminal non-volatile transistor device. A non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and each in electrical communication with a respective terminal. A channel region of a second semiconductor type of material is disposed between the source and drain region. A floating gate structure is made of at least one of semiconductive or conductive material and is disposed over the channel region. A control gate is made of at least one of semiconductive or conductive material and is in electrical communication with a respective terminal. An electromechanically-deflectable nanotube switching element is in electrical communication with one of the floating gate structure and the control gate structure, and is positioned to be electromechanically deflectable into contact with the other of the floating gate structure and the control gate structure.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: July 11, 2006
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin