Formed From Plural Layers Of Nanosized Material (e.g., Stacked Structures, Etc.) Patents (Class 977/712)
  • Patent number: 9493345
    Abstract: The present invention provides a method for fabricating slanted copper nanorods. The method includes manufacturing a workpiece configured to include an etch stop layer on a wafer, placing the workpiece in a slanted position, and etching the slanted workpiece, forming a copper (Cu) layer on the slanted workpiece by plating, removing an over-plated portion from the copper layer, and removing a polysilicon (poly Si) excluding copper from the surface of the workpiece. According to the invention, copper nanorod structures having a uniform array can be fabricated in a large area at a high process yield compared to conventional methods. In addition, the angle and diameter of copper nanorods can be controlled as desired so that the applicability thereof can be greatly increased. Moreover, the present invention can be applied to processes for fabricating various devices, including semiconductor devices, MEMSs (microelectromechanical systems), optical devices, gas sensors, display devices, etc.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 15, 2016
    Assignee: Ajou University Industry-Academic Cooperation Foundation
    Inventors: Sung-Woon Cho, Chang-Koo Kim
  • Patent number: 9037214
    Abstract: In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 19, 2015
    Assignee: The Regents of the University of California
    Inventors: Fanqing Chen, Louis-Serge Bouchard
  • Patent number: 9005540
    Abstract: Hollow conjugated polyelectrolyte (HCPE) microcapsules contain at least one conjugated polyelectrolyte and at least one other polyelectrolyte of complementary charge and the microcapsule has a hollow core. The conjugated polyelectrolyte is a polymer with a multiplicity of charged repeating units where a portion of the charged repeating units form a pi-conjugated sequence. The complementary polyelectrolyte is a polymer with a complementary charged repeating unit to the charged repeating units of the conjugated polyelectrolyte. The HCPE microcapsules can be formed by successively coating a sacrificial core with alternating layers of complementary polyelectrolytes, at least one of which is a conjugated polyelectrolyte. The sacrificial core can be removed to form the hollow center of a HCPE microcapsule.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: April 14, 2015
    Assignees: University of Florida Research Foundation, Inc., STC.UNM
    Inventors: Kirk S. Schanze, Motokatsu Ogawa, Jonathan Robert Sommer, David G. Whitten, Thomas S. Corbitt
  • Patent number: 8999716
    Abstract: Provided herein are artificial membranes of mycolic acids. The membranes may be unsupported or tethered. These membranes are long lived and highly resistant to electroporation, demonstrating their general strength. The mycolic acid membranes are suitable for controlled studies of the mycobacterial outer membrane and can be used in other experiments, such as nanopore analyte translocation experiments.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: April 7, 2015
    Assignee: University of Washington
    Inventors: Jens Gundlach, Ian M. Derrington, Kyle W. Langford
  • Patent number: 8927988
    Abstract: A method of forming a nanopore array includes patterning a front layer of a substrate to form front trenches, the substrate including a buried layer disposed between the front layer and a back layer; depositing a membrane layer over the patterned front layer and in the front trenches; patterning the back layer and the buried layer to form back trenches, the back trenches being aligned with the front trenches; forming a plurality of nanopores through the membrane layer; depositing a sacrificial material in the front trenches and the back trenches; depositing front and back insulating layers over the sacrificial material; and heating the sacrificial material to a decomposition temperature of the sacrificial material to remove the sacrificial material and form pairs of front and back channels, wherein the front channel of each channel pair is connected to the back channel of its respective channel pair by an individual nanopore.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, Hongbo Peng
  • Patent number: 8916200
    Abstract: Functional nanoparticles may be formed using at least one nanoimprint lithography step. In one embodiment, sacrificial material may be patterned on a multilayer substrate including one or more functional layers between removable layers using an imprint lithography process. At least one of the functional layers includes a functional material such as a pharmaceutical composition or imaging agent. The pattern may be further etched into the multilayer substrate. At least a portion of the functional material may then be removed to provide a crown surface exposing pillars. Removing the removable layers releases the pillars from the patterned structure to form functional nanoparticles such as drug or imaging agent carriers.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: December 23, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Vikramjit Singh, Frank Y. Xu, Sidlgata V. Sreenivasan
  • Patent number: 8858764
    Abstract: A technique for a nanodevice is provided that includes a reservoir filled with a conductive fluid and a membrane separating the reservoir. The membrane includes an electrode layer having a tunneling junction formed therein. A nanopore is formed through the membrane, and the nanopore is formed through other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Deqiang Wang
  • Patent number: 8852407
    Abstract: A nanodevice is provided that includes a reservoir filled with a conductive fluid and a membrane separating the reservoir. The membrane includes an electrode layer having a tunneling junction formed therein. A nanopore is formed through the membrane, and the nanopore is formed through other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitky, Deqiang Wang
  • Patent number: 8652874
    Abstract: A method of making nanostructures using a self-assembled monolayer of organic spheres is disclosed. The nanostructures include bowl-shaped structures and patterned elongated nanostructures. A bowl-shaped nanostructure with a nanorod grown from a conductive substrate through the bowl-shaped nanostructure may be configured as a field emitter or a vertical field effect transistor. A method of separating nanoparticles of a desired size employs an array of bowl-shaped structures.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 18, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong L. Wang, Christopher J. Summers, Xudong Wang, Elton D Graugnard, Jeffrey King
  • Patent number: 8618009
    Abstract: Hollow conjugated polyelectrolyte (HCPE) microcapsules contain at least one conjugated polyelectrolyte and at least one other polyelectrolyte of complementary charge and the microcapsule has a hollow core. The conjugated polyelectrolyte is a polymer with a multiplicity of charged repeating units where a portion of the charged repeating units form a pi-conjugated sequence. The complementary polyelectrolyte is a polymer with a complementary charged repeating unit to the charged repeating units of the conjugated polyelectrolyte. The HCPE microcapsules can be formed by successively coating a sacrificial core with alternating layers of complementary polyelectrolytes, at least one of which is a conjugated polyelectrolyte. The sacrificial core can be removed to form the hollow center of a HCPE microcapsule.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 31, 2013
    Assignee: STC.UNM
    Inventors: Kirk S. Schanze, Motokatsu Ogawa, Jonathan R. Sommer, David G. Whitten, Thomas Corbitt
  • Publication number: 20130284596
    Abstract: The invention relates to a biopile electrode or biosensor electrode intended to be immersed in a liquid medium containing a target and an oxidizer, respectively a reducer, in which the anode comprises an enzyme able to catalyse the oxidation of a target, and the cathode comprises an enzyme able to catalyse the reduction of the oxidizer, and in which each of the anode electrode and cathode electrode consists of a solid agglomeration of carbon nanotubes mixed with the enzyme, and is secured to an electrode wire
    Type: Application
    Filed: August 18, 2011
    Publication date: October 31, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE JOSEPH FOURIER
    Inventors: Abdelkader Zebda, Alan Le Goff, Michael Holzinger, Serge Cosnier
  • Patent number: 8563348
    Abstract: A continuous film of desired electrical characteristics is obtained by successively printing and annealing two or more dispersions of prefabricated nanoparticles.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: October 22, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: James Harris, Nigel Pickett
  • Patent number: 8557097
    Abstract: A technique for embedding a nanotube in a nanopore is provided. A membrane separates a reservoir into a first reservoir part and a second reservoir part, and the nanopore is formed through the membrane for connecting the first and second reservoir parts. An ionic fluid fills the nanopore, the first reservoir part, and the second reservoir part. A first electrode is dipped in the first reservoir part, and a second electrode is dipped in the second reservoir part. Driving the nanotube into the nanopore causes an inner surface of the nanopore to form a covalent bond to an outer surface of the nanotube via an organic coating so that the inner surface of the nanotube will be the new nanopore with a super smooth surface for studying bio-molecules while they translocate through the nanotube.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Binquan Luan, Hongbo Peng
  • Patent number: 8536015
    Abstract: In accordance with aspects of the invention, a method of forming a metal-insulator-metal stack is provided. The method includes forming a first conducting layer, forming a resistivity-switching carbon-based material above the first conducting layer, and forming a second conducting layer above the carbon-based material, wherein the carbon-based material has a thickness of not more than ten atomic layers. Other aspects are also described.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 17, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Roy E. Scheuerlein, Alper Ilkbahar, April D. Schricker
  • Patent number: 8519497
    Abstract: A device comprising a diblock copolymer mask for fabricating a magnetoresistive random access memory (MRAM) includes a magnetic layer; a mask formed on the magnetic layer; a template formed on the mask; and the diblock copolymer mask, the diblock copolymer mask comprising a first plurality of uniform shapes formed on and registered to the template.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventor: Michael C. Gaidis
  • Patent number: 8507556
    Abstract: A core-shell nanoparticle having a core that includes a fluorophore and a first oxide of a first metal and a shell that includes a second oxide of a second metal such that the first oxide and the second oxide are different. Also disclosed are methods relating to the core-shell nanoparticle.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: August 13, 2013
    Assignee: Boise State University
    Inventors: Hua Wang, Denise Wingett, Kevin Feris, Mfadhusudan R. Kongara, Alex Punnoose
  • Patent number: 8481164
    Abstract: A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Robert Dennis Miller, Willi Volksen
  • Patent number: 8432604
    Abstract: Transparent structures, electrochromic devices, and methods for making such structures/devices are provided. A transparent structure may include a transparent substrate having a plurality of micro- or nano-scale structures, at least one substance configured to block near-infrared or infrared radiation and partially cover at least substantial portions of the substrate and the plurality of micro- or nano-scale structures, and at least one photocatalyst configured to at least partially cover an outermost surface of the transparent structure.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 30, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8426722
    Abstract: Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In a particular implementation, a photovoltaic cell includes a granular semiconductor and oxide layer with nanometer-size absorber semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer is disposed between electron and hole conducting layers. In some implementations, multiple semiconductor and oxide layers can be deposited.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: April 23, 2013
    Assignee: Zetta Research and Development LLC—AQT Series
    Inventors: Mariana R. Munteanu, Erol Girt
  • Patent number: 8414831
    Abstract: A chlorine gas sensor system includes carbon nanotubes at least partially coated with a metal oxide deposited on a substrate, and a source of infra-red light positioned to illuminate at least a portion of the coated nanotubes.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: April 9, 2013
    Assignee: The University of Toledo
    Inventor: Ahalapitiya H. Jayatissa
  • Patent number: 8405063
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: March 26, 2013
    Assignee: QD Vision, Inc.
    Inventors: Peter T. Kazlas, Seth Coe-Sullivan
  • Patent number: 8400237
    Abstract: A circuit device includes a substrate 11, and a transmission line 10. The transmission line 10 includes a dielectric film 13 formed on the substrate 11, and a signal line formed on the dielectric film 13. The dielectric film 13 includes a nano-composite film in which particles of a first material are dispersed in a second material.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: March 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroaki Ueno, Hiroyuki Sakai, Tsuyoshi Tanaka, Daisuke Ueda
  • Patent number: 8384136
    Abstract: A demultiplexed nanowire sensor array for detecting different chemical and biological species are provided, comprising a sensor array and a demultiplexer array. Methods of detecting at least two chemical and/or biological species are also provided, using the demultiplexed nanowire sensor array.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: February 26, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: R. Stanley Williams, Philip J. Kuekes, Yong Chen
  • Patent number: 8373060
    Abstract: Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In particular implementations, the novel photovoltaic structures can be fabricated using low cost and scalable processes, such as magnetron sputtering. In a particular implementation, a photovoltaic cell includes a photoactive conversion layer comprising one or more granular semiconductor and oxide layers with nanometer-size semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer can be a disposed between electrode layers. In some implementations, multiple semiconductor and oxide layers can be deposited. These so-called semiconductor and oxide layers absorb sun light and convert solar irradiance into electrical free energy.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: February 12, 2013
    Assignee: Zetta Research and Development LLC—AQT Series
    Inventors: Mariana R. Munteanu, Erol Girt
  • Patent number: 8358010
    Abstract: A method for realizing a nanometric circuit architecture includes: realizing plural active areas on a semiconductor substrate; realizing on the substrate a seed layer of a first material; realizing a mask-spacer of a second material on the seed layer in a region comprised between the active areas; realizing a mask overlapping the mask-spacer and extending in a substantially perpendicular direction thereto; selectively removing the seed layer exposed on the substrate; selectively removing the mask and the mask-spacer obtaining a seed-spacer comprising a linear portion extending in that region and a portion substantially orthogonal thereto; realizing by MSPT from the seed-spacer an insulating spacer reproducing at least part of the profile of the seed-spacer; realizing by MSPT a nano-wire of conductive material from the seed-spacer or insulating spacer, the nano-wire comprising a first portion at least partially extending in the region and a second portion contacting a respective active area.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: January 22, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Danilo Mascolo, Gianfranco Cerofolini
  • Patent number: 8323488
    Abstract: Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: December 4, 2012
    Assignees: California Institute of Technology, City of Hope
    Inventors: Yu-Chong Tai, Qing He, Jun Xie, Changlin Pang, Terry D. Lee, Damien Rodger, Matthieu Liger
  • Patent number: 8298445
    Abstract: Microstructures, microdevices and related methods are disclosed.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: October 30, 2012
    Assignee: The Trustees of Boston College
    Inventors: John T. Fourkas, Richard A. Farrer
  • Patent number: 8299613
    Abstract: The invention relates to a method for connecting two joining surfaces, particularly in the field of semiconductors, wherein at least one joining surface is produced by depositing a layer comprising 20 to 40% gold and 80 to 60% silver onto a substrate and selectively removing the silver from the deposited layer in order to produce a nanoporous gold layer as a joining surface. The joining surface with the nanoporous gold layer and an additional joining surface are disposed one above the other and pressed together.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: October 30, 2012
    Assignee: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V.
    Inventor: Hermann Oppermann
  • Patent number: 8299341
    Abstract: Solid and hollow cylindrical nanopillars with nanoscale diameters are provided. Also provides is a method of making such nanopillars using electron beam lithography followed by the electroplating.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: October 30, 2012
    Assignee: The California Institute of Technology
    Inventors: Julia R. Greer, Michael Burek
  • Patent number: 8257494
    Abstract: One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: September 4, 2012
    Assignee: Dimerond Technologies, LLC
    Inventor: Dieter M. Gruen
  • Patent number: 8237145
    Abstract: According to one embodiment, a nonvolatile memory device includes a stacked body including a first layer, a second layer and a recording layer. The recording layer is provided between the first layer and the second layer. The recording layer is capable of reversibly changing between a first state and a second state having a resistance higher than a resistance in the first state by a current supplied via the first layer and the second layer. The recording layer includes a first portion and a second portion provided in a plane of a major surface of the recording layer. The second portion has a nitrogen amount higher than a nitrogen amount in the first portion.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: August 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Chikayoshi Kamata, Takayuki Tsukamoto, Kohichi Kubo, Shinya Aoki, Takahiro Hirai, Toshiro Hiraoka
  • Patent number: 8206505
    Abstract: The inventive method for forming nano-dimensional clusters consists in introducing a solution containing a cluster-forming material into nano-pores of natural or artificial origin contained in a substrate material and in subsequently exposing said solution to a laser radiation pulse in such a way that a low-temperature plasma producing a gaseous medium in the domain of the existence thereof, wherein a cluster material is returned to a pure material by the crystallization thereof on a liquid substrate while the plasma is cooling, occurs, thereby forming mono-crystal quantum dots spliced with the substrate material. Said method makes it possible to form two- or three-dimensional cluster lattices and clusters spliced with each other from different materials. The invention also makes it possible to produce wires from different materials in the substrate nano-cavities and the quantum dots from the solution micro-drops distributed through an organic material applied to a glass.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: June 26, 2012
    Inventors: Sergei Nikolaevich Maximovsky, Grigory Avramovich Radutsky
  • Patent number: 8193455
    Abstract: An electrical circuit structure employing graphene as a charge carrier transport layer. The structure includes a plurality of graphene layers. Electrical contact is made with one of the layer of the plurality of graphene layers, so that charge carriers travel only through that one layer. By constructing the active graphene layer within or on a plurality of graphene layers, the active graphene layer maintains the necessary planarity and crystalline integrity to ensure that the high charge carrier mobility properties of the active graphene layer remain intact.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 5, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Ernesto E. Marinero
  • Patent number: 8158880
    Abstract: Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In a particular implementation, a photovoltaic cell includes a granular semiconductor and oxide layer with nanometer-size absorber semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer may be disposed between electron and hole conducting layers. In some implementations, multiple semiconductor and oxide layers can be deposited.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: April 17, 2012
    Assignee: AQT Solar, Inc.
    Inventors: Erol Girt, Mariana Rodica Munteanu
  • Patent number: 8119434
    Abstract: A lateral p-i-n photodetector is provided that includes an array of vertical semiconductor nanowires of a first conductivity type that are grown over a semiconductor substrate also of the first conductivity type. Each vertically grown semiconductor nanowires of the first conductivity type is surrounded by a thick epitaxial intrinsic semiconductor film. The gap between the now formed vertically grown semiconductor nanowires-intrinsic semiconductor film columns (comprised of the semiconductor nanowire core surrounded by intrinsic semiconductor film) is then filled by forming an epitaxial semiconductor material of a second conductivity type which is different from the first conductivity type. In a preferred embodiment, the vertically grown semiconductor nanowires of the first conductivity type are n+ silicon nanowires, the intrinsic epitaxial semiconductor layer is comprised of intrinsic epitaxial silicon, and the epitaxial semiconductor material of the second conductivity type is comprised of p+ silicon.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventor: Guy M. Cohen
  • Patent number: 8110476
    Abstract: In accordance with aspects of the invention, a method of forming a memory cell is provided, the method including forming a steering element above a substrate, and forming a memory element coupled to the steering element, wherein the memory element comprises a carbon-based material having a thickness of not more than ten atomic layers. The memory element may be formed by repeatedly performing the following steps: forming a layer of a carbon-based material, the layer having a thickness of about one monolayer, and subjecting the layer of carbon-based material to a thermal anneal. Other aspects are also described.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: February 7, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Roy E. Scheuerlein, Alper Ilkbahar, April D. Shricker
  • Publication number: 20120006102
    Abstract: Sensors and detection systems suitable for measuring analytes, such as biomolecule, organic and inorganic species, including environmentally and medically relevant volatiles and gases, such as NO, NO2, CO2, NH3, H2, CO and the like, are provided. Certain embodiments of nanostructured sensor systems are configured for measurement of medically important gases in breath. Applications include the measurement of endogenous nitric oxide (NO) in breath, such as for the monitoring or diagnosis of asthma and other pulmonary conditions.
    Type: Application
    Filed: April 11, 2011
    Publication date: January 12, 2012
    Applicant: NANOMIX, INC.
    Inventors: Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Bradley N. Johnson, Oleksandr Kuzmych, William Mickelson, John Loren Passmore, Sergei Skarupo, Christian Valcke
  • Patent number: 8076701
    Abstract: A method of making nanostructures using a self-assembled monolayer of organic spheres is disclosed. The nanostructures include bowl-shaped structures and patterned elongated nanostructures. A bowl-shaped nanostructure with a nanorod grown from a conductive substrate through the bowl-shaped nanostructure may be configured as a field emitter or a vertical field effect transistor. A method of separating nanoparticles of a desired size employs an array of bowl-shaped structures.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: December 13, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong L. Wang, Christopher J. Summers, Xudong Wang, Elton D Graugnard, Jeffrey King
  • Patent number: 8044750
    Abstract: A nano-resonator including a beam having a composite structure may include a silicon carbide beam and/or a metal conductor. The metal conductor may be vapor-deposited on the silicon carbide beam. The metal conductor may have a density lower than a density of the silicon carbide beam.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong Chan Jun, Sun Il Kim, Chan Wook Baik
  • Patent number: 8034315
    Abstract: Some embodiments include devices that contain bundles of CNTs. An undulating topography extends over the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is directly over the CNTs, with the material being a plurality of particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width. Some embodiments include methods in which a plurality of crossed carbon nanotubes are formed over a semiconductor substrate. The CNTs form an undulating upper topography extending across the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is deposited over the CNTs, with the material being deposited as particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej S. Sandhu, Eugene Marsh, Neil Greeley, John Smythe
  • Patent number: 8003883
    Abstract: A photovoltaic device that includes a substrate and a nanowall structure disposed on the substrate surface. The device also includes at least one layer conformally deposited over the nanowall structure. The conformal layer(s) is at least a portion of a photoactive junction. A method for making a photovoltaic device includes generating a nanowall structure on a substrate surface and conformally depositing at least one layer over the nanowall structure thereby forming at least one photoactive junction. A solar panel includes at least one photovoltaic device based on a nanowall structure. The solar panel isolates such devices from its surrounding atmospheric environment and permits the generation of electrical power. Optoelectronic device may also incorporate a photovoltaic device based on a nanowall structure.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: August 23, 2011
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, Loucas Tsakalakos, Joleyn Balch
  • Patent number: 7999160
    Abstract: A method. A first copolymer is provided. A substrate is provided having an energetically neutral surface layer with at least one trough integrally disposed thereon with sidewalls. A first film of the first copolymer is coated inside the trough. Line-forming microdomains are assembled of the first copolymer forming first self-assembled structures within the first film normal to the sidewalls and parallel to the surface layer. The first and second polymer blocks are removed from the first film and oriented structures remain in the trough normal to the sidewalls and parallel to the surface layer. A second film of a second copolymer is coated inside the trough. Line-forming microdomains are assembled of the second copolymer, and form second self-assembled structures within the second film oriented normal to the oriented structures and parallel to the sidewalls. The third and fourth polymer blocks are removed, and at least one second oriented structure remains.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, Ho-Cheol Kim, Robert D. Miller
  • Patent number: 7977568
    Abstract: A photovoltaic device includes a substrate having at least two surfaces and a multilayered film disposed on at least a portion of at least one surface of the substrate. Elongated nanostructures are disposed on the multilayered film. The device incorporates a top layer of the multilayered film contacting the elongated nanostructures that is a tunnel junction. The device has at least one layer deposited over the elongated nanostructures defining a portion of a photoactive junction. A solar panel includes at least one photovoltaic device. The solar panel isolates each such devices from its surrounding atmospheric environment and permits the generation of electrical power.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, Loucas Tsakalakos
  • Patent number: 7973997
    Abstract: Transparent structures, electrochromic devices, and methods for making such structures/devices are provided. A transparent structure may include a transparent substrate having a plurality of micro- or nano-scale structures, at least one substance configured to block near-infrared or infrared radiation and partially cover at least substantial portions of the substrate and the plurality of micro- or nano-scale structures, and at least one photocatalyst configured to at least partially cover an outermost surface of the transparent structure.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 5, 2011
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 7965388
    Abstract: A structure for surface enhanced Raman spectroscopy is disclosed herein. A substrate has a stack configured vertically thereon. The stack encompasses at least two metal layers and at least one dielectric layer therebetween. Each layer of the stack has a controlled thickness, and each of the at least two metal layers is configured to exhibit a predetermined characteristic of plasmonic resonance.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: June 21, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Qiangfei Xia, Wei Wu, Zhiyong Li, Jing Tang
  • Patent number: 7947487
    Abstract: Method for making multifunctional particles. The method includes flowing a first monomer stream loaded with a fluorescent entity along a microfluidic channel and flowing a second monomer stream loaded with a probe adjacent to the first monomer stream along the microfluidic channel. The monomer streams are polymerized to synthesize particles having a fluorescent, graphically encoded region and a probe-loaded region.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: May 24, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Patrick S. Doyle, Daniel C. Pregibon
  • Patent number: 7939560
    Abstract: Multifunctional “smart” nanostructures are disclosed that include fluorescein isothiocyanate (FITC)-encapsulated SiO2 core-shell particles with a nanoscale ZnO finishing layer, wherein an outer ZnO layer is formed on the SiO2-FITC core. These ˜200 nm sized particles showed promise toward cell imaging and cellular uptake studies using the bacterium Escherichia coli and Jurkat cancer cells, respectively. The FITC encapsulated ZnO particles demonstrated excellent selectivity in preferentially killing Jurkat cancer cells with minimal toxicity to normal primary immune cells (18% and 75% viability remaining, respectively, after exposure to 60 ?g/mL) and inhibited the growth of both gram-positive and gram-negative bacteria at concentrations ?250-500 ?g/mL (for Staphylococcus aureus and Escherichia coli, respectively).
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 10, 2011
    Assignee: Boise State University
    Inventors: Hua Wang, Denise Wingett, Kevin Feris, Madhusudan R Kongara, Alex Punnoose
  • Patent number: 7893348
    Abstract: In some embodiments, the present invention is directed to photovoltaic (PV) devices comprising silicon (Si) nanowires as active PV elements, wherein such devices are typically thin film Si solar cells. Generally, such solar cells are of the p-i-n type and can be fabricated for front and/or backside (i.e., top and/or bottom) illumination. Additionally, the present invention is also directed at methods of making and using such devices, and to systems and modules (e.g., solar panels) employing such devices.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, Loucas Tsakalakos
  • Patent number: 7893513
    Abstract: According to some embodiments, the present invention provides a nanoelectronic device based on a nanostructure that may include a nanotube with first and second ends, a metallic nanoparticle attached to the first end, and an insulating nanoparticle attached to the second end. The nanoelectronic device may include additional nanostructures so a to form a plurality of nanostructures comprising the first nanostructure and the additional nanostructures. The plurality of nanostructures may arranged in a network comprising a plurality of edges and a plurality of vertices, wherein each edge comprises a nanotube and each vertex comprises at least one insulating nanoparticle and at least one metallic nanoparticle adjacent the insulating nanoparticle. The combination of at least one edge and at least one vertex comprises a diode. The device may be an optical rectenna.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: February 22, 2011
    Assignee: William Marsh Rice University
    Inventor: Howard K. Schmidt
  • Patent number: 7839647
    Abstract: An insulating film includes a first polymer layer, a second polymer layer and an electromagnetic shielding layer sandwiched between the first polymer layer and the second polymer layer. The electromagnetic shielding layer includes a number of carbon nanotube films that are substantially parallel to the first and second polymer layer. Each of the carbon nanotube films includes a number of carbon nanotubes that are substantially parallel to each other. The insulating film can provide anti-EMI effect in printed circuit boards without employing additional electromagnetic shielding layers.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: November 23, 2010
    Assignee: Foxconn Advanced Technology, Inc.
    Inventors: Wen-Chin Lee, Cheng-Hsien Lin