For Electrical Purposes Patents (Class 977/730)
  • Patent number: 8920681
    Abstract: An electrically conductive polymer linked to conductive nanoparticle is provided. The conductive polymer can include conductive monomers and one or more monomers in the conductive polymer can be linked to a conductive nanoparticle and can include a polymerizable moiety so that it can be incorporated into a polymer chain. The electrically conductive monomer can include a 3,4-ethylenedioxythiophene as a conductive monomer. The electrically conductive polymer having the conductive nanoparticle can be prepared into an electrically conductive layer or film for use in electronic devices.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: December 30, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Dong Hoon Choi
  • Patent number: 8568924
    Abstract: An improved anode material for a lithium ion battery is disclosed. The improved anode material can improve both electric conductivity and the mechanical resilience of the anode, thus drastically increasing the lifetime of lithium ion batteries.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 29, 2013
    Assignee: CNano Technology Limited
    Inventors: Jun Ma, Zhaojie Wei, Guanghui Feng, Bin He, Gang Xu, Tao Zheng
  • Patent number: 8519262
    Abstract: Core shell particles and bulk-heterojunction organic photovoltaic devices using the core shell particles are described. In particular, core shell particles having a core particle and a shell of a second material and bulk-heterojunction organic photovoltaic devices using the core-shell particles are described. The core-shell particles can have a core particle with an electron donating material or a core particle with an electron donating material. Formation of a hulk-heterojunction organic photovoltaic device using such an core-shell particles forming an interpenetrating network with the an electron donating or electron accepting phase is also described.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: August 27, 2013
    Assignee: Nano-C, Inc.
    Inventors: Ramesh Sivarajan, Henning Richter, Angela Herring, Thomas A. Lada, Viktor Vejins
  • Patent number: 8300420
    Abstract: A circuit substrate includes an electrically conductive layer having electrically conductive patterns formed therein, an insulating layer having a through hole, and a composite layer positioned between the electrically conductive layer and the insulating layer. The through hole is configured for having an electronic component mounted thereon. The composite layer includes a polymer matrix and at least one carbon nanotube bundle embedded in the polymer matrix. One end of the at least one carbon nanotube bundle contacts the electrically conductive patterns, and the other is exposed in the through hole of the insulation layer.
    Type: Grant
    Filed: May 24, 2009
    Date of Patent: October 30, 2012
    Assignee: Zhen Ding Technology Co., Ltd.
    Inventors: Chung-Jen Tsai, Hung-Yi Chang, Chia-Cheng Chen, Meng-Chieh Hsu, Cheng-Hsien Lin
  • Patent number: 8039834
    Abstract: A semiconducting device includes a substrate, a piezoelectric wire, a structure, a first electrode and a second electrode. The piezoelectric wire has a first end and an opposite second end and is disposed on the substrate. The structure causes the piezoelectric wire to bend in a predetermined manner between the first end and the second end so that the piezoelectric wire enters a first semiconducting state. The first electrode is coupled to the first end and the second electrode is coupled to the second end so that when the piezoelectric wire is in the first semiconducting state, an electrical characteristic will be exhibited between the first electrode and the second electrode.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: October 18, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong L. Wang, Xudong Wang, Jinhui Song, Jun Zhou, Jr-Hau He
  • Patent number: 8003982
    Abstract: An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 23, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong L. Wang, Sheng Xu