Exterior Attachment For Targeting (e.g., Drug Targeting, Etc.) Patents (Class 977/808)
  • Patent number: 11614451
    Abstract: Methods and compositions for detecting tau pathology are described. The compositions for detecting tau pathology comprise a targeting ligand that specifically binds to a cell surface marker of tau pathology, wherein the targeting ligand is linked to a liposome that includes an imaging agent. The compositions can be used in a method for imaging tau pathology in a subject that comprises administering to the subject an effective amount of the composition to a subject and imaging at least a portion of the subject to determine if that portion of the subject exhibits tau pathology. The compositions can also be used to detect tau pathology in biological samples obtained from a subject.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: March 28, 2023
    Assignees: Alzeca Biosciences, LLC, Texas Children's Hospital
    Inventors: Ananth Annapragada, Qingshan Mu, Carlo Medici
  • Patent number: 8653327
    Abstract: Methods for introducing a linear nucleic acid molecule of interest into a cell comprising a cell wall include use of nanoparticles coated with polyethylene glycol. In some embodiments, the cell comprising a cell wall is a plant cell. Methods include genetically or otherwise modifying plants and for treating or preventing disease in plant cells comprising a cell wall. Transgenic plants include a nucleic acid molecule of interest produced by regeneration of whole plants from plant cells transformed with linear nucleic acid molecules.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: February 18, 2014
    Assignee: Agrigenetics, Inc.
    Inventors: Narasimha C. Samboju, Kerrm Y. Yau, Frank Burroughs, Jayakumar P. Samuel, Steven R. Webb
  • Patent number: 8613929
    Abstract: The present invention relates to nucleic acids and polypeptides encoded thereby, whose expression is modulated in brain microvascular endothelial cells undergoing early dynamic inflammation-induced changes in blood-brain bather functionality. Such polypeptides are referred to as lipopolysaccharide-sensitive (LPSS) polypeptides. These nucleic acids and polypeptides may be useful in methods for controlling blood-brain bather properties in mammals in need of such biological effects. This includes the diagnosis and treatment of disturbances in the blood-brain/retina barrier, brain (including the eye) disorders, as well as peripheral vascular disorders. Additionally, the invention relates to the use of anti-LPSS polypeptide antibodies or ligands as diagnostic probes, as blood-brain barrier targeting agents or as therapeutic agents as well as the use of ligands or modulators of expression, activation or bioactivity of LPSS polypeptides as diagnostic probes, therapeutic agents or drug delivery enhancers.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 24, 2013
    Assignee: TO-BBB Holding B.V.
    Inventors: Pieter J. Gaillard, Albertus G. De Boer, Arjen Brink
  • Patent number: 8323696
    Abstract: Nanoparticles that activate complement in the absence of biological molecules are described. The nanoparticles are shown to specifically target antigen presenting cells in specifically in lymph nodes, without the use of a biological molecule for targeting. These particles are useful vehicles for delivering immunotherapeutics. Surface chemistries and chemical formulations for the nanoparticles are described.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: December 4, 2012
    Assignee: Ecole Polytechnique Federale de Lausanne
    Inventors: Jeffrey A. Hubbell, Conlin P. O'Neil, Sai T. Reddy, Melody A. Swartz, Diana Velluto, André van der Vlies, Eleonora Simeoni
  • Publication number: 20120294888
    Abstract: Disclosed are synthetic nanocarrier compositions, and related methods, comprising immunosuppressants and MHC Class II-restricted epitopes of an allergen that provide tolerogenic immune responses specific to the allergen.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 22, 2012
    Applicant: Selecta Biosciences, Inc.
    Inventors: Takashi Kei Kishimoto, Christopher Fraser, Roberto A. Maldonado
  • Patent number: 8026209
    Abstract: The present invention relates to nucleic acids and polypeptides encoded thereby, whose expression is modulated in brain microvascular endothelial cells undergoing early dynamic inflammation-induced changes in blood-brain barrier functionality. Such polypeptides are referred to as lipopolysaccharide-sensitive (LPSS) polypeptides herein. These nucleic acids and polypeptides may be useful in methods for controlling blood-brain barrier properties in mammals in need of such biological effects. This includes the diagnosis and treatment of disturbances in the blood-brain/retina barrier, brain (including the eye) disorders, as well as peripheral vascular disorders. Additionally, the invention relates to the use of anti-LPSS polypeptide antibodies or ligands as diagnostic probes, as blood-brain barrier targeting agents or as therapeutic agents as well as the use of ligands or modulators of expression, activation or bioactivity of LPSS polypeptides as diagnostic probes, therapeutic agents or drug delivery enhancers.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: September 27, 2011
    Assignee: BBB Holding B.V.
    Inventors: Pieter Jaap Gaillard, Albertus Gerrit De Boer, Arjen Brink
  • Patent number: 7947307
    Abstract: The present invention is directed to compositions useful as imaging agents for use in monitoring atherosclerotic plaque regression using, for example, MRI, CT, Gamma-scintigraphy, or optical imaging techniques. Methods and compositions of using the same are described.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: May 24, 2011
    Assignee: Mount Sinai School of Medicine of New York University
    Inventors: Edward A. Fisher, Zahi A. Fayad, Gwendalyn Randolph, Jonathan Feig, Eugene Trogan
  • Patent number: 7329807
    Abstract: The present invention relates to novel fusogenic vesicles as highly efficient and versatile encapsulation systems for delivering a substance of choice, such as nucleic acids, proteins, peptides, antigens, pharmaceutical drugs and cosmetic agents to cells and tissues.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: February 12, 2008
    Assignee: Pevion Biotech Ltd.
    Inventors: Sonia Vadrucci, Joseph Brunner, Rinaldo Zurbriggen