Piezoelectric Property Of Nanomaterial Patents (Class 977/837)
-
Publication number: 20150070444Abstract: A piezoelectric actuator includes a vibrating plate, a lower electrode provided on the vibrating plate, including a platinum film and a titanium oxide film formed on the platinum film, a piezoelectric thin film provided on the lower electrode, and an upper electrode provided on the piezoelectric thin film, in which the titanium oxide film is provided between the platinum film and the piezoelectric thin film.Type: ApplicationFiled: August 27, 2014Publication date: March 12, 2015Applicant: RICOH COMPANY, LTD.Inventors: Masahiro Ishimori, Manabu Nishimura, Masaru Shinkai, Keiji UEDA, Tsutoh Aoyama, Toshiaki Masuda
-
Patent number: 8877085Abstract: A piezoelectric and/or pyroelectric composite solid hybrid material, includes: a solid dielectric matrix, a filler of at least one inorganic piezoelectric and/or pyroelectric material, wherein the filler includes filiform nanoparticles distributed throughout the volume of the solid dielectric matrix with an amount by volume of less than 50%, and in that the main directions of elongation of the filiform nanoparticles of the inorganic filler distributed in the dielectric matrix have a substantially isotropic distribution in the solid dielectric matrix.Type: GrantFiled: December 3, 2010Date of Patent: November 4, 2014Assignee: Universite Paul Sabatier Toulouse IIIInventors: Jean-Fabien Capsal, Charlotte David, Eric Dantras, Colette Lacabanne
-
Patent number: 8854772Abstract: A microactuator, for example for a disc drive, comprising a substrate, a sandwich structure on the substrate, and a passivation layer over the substrate and the sandwich structure. The sandwich structure has a bottom electrode formed from noble metal, a piezoelectric layer, and a top electrode formed from noble metal. The microactuator further has one or both of a bottom adhesion layer present between the bottom electrode and the passivation layer, and a top adhesion layer present between the top electrode and the passivation layer. That is, the microactuator may have only the bottom adhesion layer, only the top adhesion layer, or both the bottom adhesion layer and the top adhesion layer.Type: GrantFiled: May 3, 2013Date of Patent: October 7, 2014Assignee: Seagate Technology LLCInventors: Dadi Setiadi, Wei Tian, Young Pil Kim
-
Patent number: 8815089Abstract: Nanoparticle-treated particle packs, such as sand beds, may effectively filter and purify liquids such as waste water. When tiny contaminant particles in waste water flow through the particle pack, the nanoparticles will capture and hold the tiny contaminant particles within the pack due to the nanoparticles' surface forces, including, but not necessarily limited to van der Waals and electrostatic forces. Coating agents such as alcohols, glycols, polyols, vegetable oil, and mineral oils may help apply the nanoparticles to the particle surfaces in the filter beds or packs.Type: GrantFiled: July 6, 2012Date of Patent: August 26, 2014Assignee: Baker Hughes IncorporatedInventors: Tianping Huang, James B. Crews
-
Patent number: 8680514Abstract: An electric energy generator may include a semiconductor layer and a plurality of nanowires having piezoelectric characteristics. The electric energy generator may convert optical energy into electric energy if external light is applied and may generate piezoelectric energy if external pressure (e.g., sound or vibration) is applied.Type: GrantFiled: October 27, 2010Date of Patent: March 25, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Young-jun Park, Seung-nam Cha
-
Patent number: 8640312Abstract: A manufacturing method of an apparatus for generating electrical energy according to an embodiment of the present invention comprises disposing a first electrode on a substrate, disposing a nanowire comprising a piezoelectric material on the first electrode, disposing a photoelectric conversion layer which is electrically connected to the nanowire on the first electrode, disposing, a second electrode on the nanowire and the photoelectric conversion layer, connecting the first electrode and the second electrode by a connection part, and disposing a storage part which is electrically connected to the connection part, wherein when an external force is applied to at least one of the first electrode and the second electrode, the nanowire is transformed to generate electrical energy.Type: GrantFiled: May 11, 2012Date of Patent: February 4, 2014Assignees: Samsung Electronics Co., Ltd., Kumoh National Institute of Technology Industry-Academic CooperationInventors: Duk-Hyun Choi, Jae-Young Choi, Sang-Yoon Lee, Sang-Woo Kim
-
Patent number: 8468663Abstract: A method for manufacturing an apparatus for generating electrical energy may include; disposing a nanowire including a piezoelectric material on a first electrode, disposing an active layer, which is electrically connected to the nanowire, on the first electrode, disposing an insulating film on the nanowire, disposing a conductive layer on the active layer, and disposing a second electrode in proximity to the nanowire and substantially opposite to the first electrode.Type: GrantFiled: April 30, 2012Date of Patent: June 25, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Dukhyun Choi, Jaeyoung Choi
-
Patent number: 8410182Abstract: Provided are electrokinetically-altered fluids (e.g., gas-enriched (e.g., oxygen-enriched) electrokinetic fluids) comprising an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures in an amount sufficient to provide, upon contact with a cell, modulation of at least one of cellular membrane potential and cellular membrane conductivity. Further provided are the methods of making the electrokinetically-altered ionic aqueous fluid compositions. Particular aspects provide for regulating or modulating intracellular signal transduction associated by modulation of at least one of cellular membranes, membrane potential, membrane proteins such as membrane receptors, including but not limited to G-Protein Coupled Receptors (GPCR), and intercellular junctions (e.g., tight junctions, gap junctions, zona adherins and desmasomes). Other embodiments include particular methods of producing the electrokinetically-altered fluids.Type: GrantFiled: April 30, 2009Date of Patent: April 2, 2013Assignee: Revalesio CorporationInventors: Anthony B. Wood, Gregory J. Archambeau, Richard L. Watson
-
Publication number: 20120225435Abstract: Disclosed herein are methods and systems for controlled ejection of desired material onto surfaces including in single cells using nanopipettes, as well as ejection onto and into cells. Some embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller for depositing a user defined pattern on an arbitrary substrate for the purpose of controlled cell adhesion and growth. Alternate embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller and electronic control of a voltage differential in a bore of the nanopipette electroosmotically injecting material into a cell in a high-throughput manner and with minimal damage to the cell. Yet other embodiments are directed to method and system comprising functionalized nanopipettes combined with scanning ion conductance microscopy for studying molecular interactions and detection of biomolecules inside a single living cell.Type: ApplicationFiled: February 27, 2012Publication date: September 6, 2012Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: R. Adam Seger, Paolo Actis, Boaz Vilozny, Nader Pourmand
-
Publication number: 20120133247Abstract: There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.Type: ApplicationFiled: November 30, 2011Publication date: May 31, 2012Inventors: Keon Jae Lee, Kwi-Il Park, Do Kyung Kim, Sang Ouk Kim, Geon-Tae Hwang
-
Publication number: 20120121712Abstract: Piezoelectric nanotransducers for use in an in vivo treatment of cell stimulation through electrical stimulation are described. The nanotransducers are localized in a target site, and an electrical stimulus is induced in the same site through external stimulation of the nanotransducers by ultrasonic waves.Type: ApplicationFiled: April 14, 2010Publication date: May 17, 2012Inventors: Gianni Ciofani, Vittoria Raffa, Serena Danti, Arianna Menciassi, Paolo Dario, Mario Petrini, Alfred Cuschieri
-
Publication number: 20120000293Abstract: Nanofiber actuators and strain amplifiers having a material that generates a force or generates a displacement when directly or indirectly electrically driven. This material is an aerogel or a related low density or high density network comprising conducting fibers that are electrically interconnected and can substantially actuate without the required presence of either a liquid or solid electrolyte. Reversible or permanently frozen actuation is used to modify the properties of the actuator material for applications.Type: ApplicationFiled: August 17, 2009Publication date: January 5, 2012Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEMInventors: Ray H. Baughman, Ali E. Aliev, Jiyoung Oh, Mikhail Kozlov, Shaoli Fang, Raquel Ovalle-Robles, Anvar A. Zakhidov
-
Publication number: 20110266927Abstract: An electrostrictive composite includes two electrostrictive layers spaced with each other. The electrostrictive layers extend from a first side to a second side. The first side is spaced with and correspond to the second side. The electrostrictive layers are electrically connected with each other at the first side. The electrostrictive layers are insulated from each other at the second side.Type: ApplicationFiled: August 26, 2010Publication date: November 3, 2011Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITYInventors: CHANG-HONG LIU, LU-ZHUO CHEN, SHOU-SHAN FAN
-
Publication number: 20110268235Abstract: The present invention generally relates to high-energy composition utilized with reactors and combustors for generating electricity either directly through nuclear or magnetic energy, or indirectly through thermal energy that incorporate the high-energy composition into at least one reactor operable at a temperature greater than 1000 Celsius and containing the composition with at least one co-reactant of Boron-10, with the Boron-10 specifically enabling an at least five percent increase of energy generation and/or efficiency as compared the same reaction without Boron-10. In one embodiment, the present invention relates to the Boron-10 composition within a high-energy reactor operable at a temperature at least 1000 Celsius and a method that applies at least one externally applied force acting upon the Boron-10 portion of the reactor.Type: ApplicationFiled: April 29, 2010Publication date: November 3, 2011Inventor: Michael Gurin
-
Publication number: 20110192016Abstract: Electroactive actuation characteristics of novel BNNT based materials are described. Several series of BNNT based electroactive materials including BNNT/polyimide composites and BNNT films are prepared. The BNNT based electroactive materials show high piezoelectric coefficients, d13, about 14.80 pm/V as well as high electrostrictive coefficients, M13, 3.21×10?16 pm2N2. The BNNT based electroactive materials will be used for novel electromechanical energy conversion devices.Type: ApplicationFiled: October 13, 2010Publication date: August 11, 2011Applicants: National Institute of Aerospace Associates, USA as represented by the Administrator of the National Aeronautics and Space Administration, Jefferson Science Associates, LLCInventors: Jin Ho Kang, Cheol Park, Joycelyn S. Harrison, Michael W. Smith, Sharon E. Lowther, Jae-Woo Kim, Godfrey Sauti
-
Publication number: 20110187240Abstract: A piezoelectronic device and a method of fabricating the same are disclosed. The piezoelectronic device of the present invention comprises: a plurality of carbon nanotubes; at least one piezoceramic layer covering the plurality of carbon nanotubes; and a supporting material for supporting the carbon nanotubes and disposed between the carbon nanotubes, the supporting layer being coated with at least one piezoceramic layer, wherein the plurality of carbon nanotubes is arranged in a comb-shape. The piezoelectronic device of the present invention is advantageous in having excellent elasticity (durability) and excellent piezoelectronical property. The induced current obtained from the piezoelectronic device of the present invention is about 1.5 ?A or above as well as induced voltage being over 1V when the size of the piezoelectronic block is 2.5 mm×1 mm×1 mm (length×width×height).Type: ApplicationFiled: March 29, 2010Publication date: August 4, 2011Applicant: National Tsing Hua UniversityInventors: Wen-Kuang Hsu, Hsin-Fu Kuo, Yu-Hsien Lin, Chiung-Wen Tang, Chieh-Lien Lu, Yao-Cheng Lai
-
Publication number: 20110095653Abstract: A piezoelectric nanodevice may include a first substrate having formed thereon a multiple number of nanorods and a second substrate having formed thereon a multiple number of piezoelectric nanorods. The first substrate associates with the second substrate to generate friction between the nanorods of the first substrate and the piezoelectric nanorods of the second substrate.Type: ApplicationFiled: October 27, 2009Publication date: April 28, 2011Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATIONInventor: Kwangyeol LEE
-
Publication number: 20110006286Abstract: An electrical device includes an insulating substrate; an elongated piezoelectric semiconductor structure, a first electrode and a second electrode. A first portion of the elongated piezoelectric semiconductor structure is affixed to the substrate and a second portion of the elongated piezoelectric semiconductor structure extends outwardly from the substrate. The first electrode is electrically coupled to a first end of the first portion of the elongated piezoelectric semiconductor structure. The second electrode is electrically coupled to a second end of the first portion of the elongated piezoelectric semiconductor structure.Type: ApplicationFiled: August 13, 2010Publication date: January 13, 2011Applicant: GEORGIA TECH RESEARCH CORPORATIONInventors: Zhong L. Wang, Peng Fei
-
Publication number: 20100060109Abstract: Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or pyroelectric polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.Type: ApplicationFiled: August 31, 2009Publication date: March 11, 2010Applicant: UNIVERSITY OF MASSACHUSETTSInventors: Thomas P. Russell, Jodie Lutkenhaus
-
Publication number: 20100038244Abstract: Provided are electrokinetically-altered fluids (e.g., gas-enriched (e.g., oxygen-enriched) electrokinetic fluids) comprising an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures in an amount sufficient to provide, upon contact with a cell, modulation of at least one of cellular membrane potential and cellular membrane conductivity. Further provided are the methods of making the electrokinetically-altered ionic aqueous fluid compositions. Particular aspects provide for regulating or modulating intracellular signal transduction associated by modulation of at least one of cellular membranes, membrane potential, membrane proteins such as membrane receptors, including but not limited to G-Protein Coupled Receptors (GPCR), and intercellular junctions (e.g., tight junctions, gap junctions, zona adherins and desmasomes). Other embodiments include particular methods of producing the electrokinetically-altered fluids.Type: ApplicationFiled: April 30, 2009Publication date: February 18, 2010Applicant: Revalesio CorporationInventors: Anthony B. Wood, Gregory J. Archambeau, Richard L. Watson
-
Publication number: 20090056094Abstract: Piezoelectric nanostructures, including nanofibers, nanotubes, nanojunctions and nanotrees, may be made of piezoelectric materials alone, or as composites of piezoelectric materials and electrically-conductive materials. Homogeneous or composite nanofibers and nanotubes may be fabricated by electrospinning. Homogeneous or composite nanotubes, nanojunctions and nanotrees may be fabricated by template-assisted processes in which colloidal suspensions and/or modified sol-gels of the desired materials are deposited sequentially into the pores of a template. The electrospinning or template-assisted fabrication methods may employ a modified sol-gel process for obtaining a perovskite phase in the piezoelectric material at a low annealing temperature.Type: ApplicationFiled: August 20, 2008Publication date: March 5, 2009Inventors: Yong Shi, Shiyou Xu
-
Patent number: 7495350Abstract: Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at macroscopic level. Nanometer-scale beams are provided that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. Automatic switches may be added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. The output energy of millions of these devices may be efficiently summed together.Type: GrantFiled: September 28, 2006Date of Patent: February 24, 2009Assignee: CJP IP Holdings, Ltd.Inventors: Joseph F. Pinkerton, John C Harlan
-
Patent number: 7446457Abstract: A semiconductor device includes beam portions and piezoelectric portions. Each of the beam portions is formed to extend in a first direction with one end fixed at a substrate by use of a supporting member and warped by residual stress with the supporting member set as a starting point. Each of the piezoelectric portions is connected to the other end of the corresponding beam portion and formed to extend in a second direction intersecting with the first direction and moves parallel to the substrate in a first direction and in a direction opposite to the first direction by application of bias voltage.Type: GrantFiled: November 22, 2005Date of Patent: November 4, 2008Assignee: Kabushiki Kaisha ToshibaInventor: Tamio Ikehashi
-
Publication number: 20080257156Abstract: An air particle precipitator and a method of air filtration comprise a housing unit; a first conductor in the housing unit; a second conductor in the housing unit; and a carbon nanotube grown on the second conductor. Preferably, the first conductor is positioned opposite to the second conductor. The air particle precipitator further comprises an electric field source adapted to apply an electric field to the housing unit. Moreover, the carbon nanotube is adapted to ionize gas in the housing unit, wherein the ionized gas charges gas particulates located in the housing unit, and wherein the first conductor is adapted to trap the charged gas particulates. The air particle precipitator may further comprise a metal layer over the carbon nanotube.Type: ApplicationFiled: May 22, 2008Publication date: October 23, 2008Applicant: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
-
Patent number: 7215066Abstract: A piezoelectric actuator includes a first beam including a first bottom electrode, a first piezoelectric film on the first bottom electrode, and a first top electrode on the first piezoelectric film, a fixed end assigned at an end of the first beam and fixed on a substrate, a connecting end assigned at another end of the first beam and suspended over a free space; and a second beam including a second piezoelectric film connected to the first piezoelectric film at the connecting end, a second bottom electrode under the second piezoelectric film, and a second top electrode on the second piezoelectric film, a working end assigned at an end of the second beam opposite to another end to which the connecting end is assigned and suspended over the free space; wherein a distance between centers of the fixed end and the working end is shorter than a distance from the working end to the connecting end.Type: GrantFiled: August 4, 2005Date of Patent: May 8, 2007Assignee: Kabushiki Kaisha ToshibaInventors: Takashi Kawakubo, Toshihiko Nagano, Kazuhide Abe, Michihiko Nishigaki