Miscellaneous Patents (Class 977/963)
-
Patent number: 11773046Abstract: A facile solvothermal method can be used to synthesize metal alkanoate nanoparticles using a metal nitrate precursor, alcohol/water, and alkanoic acid. The method can produce lanthanide (e.g., La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, or Yb) and transition metal (e.g., Ag, Co, Cu, or Pb) alkanoate nanoparticles (<100 nm) with spherical morphology. These hybrid nanomaterials adopt a lamellar structure consisting of inorganic metal cation layers separated by an alkanoate anion bilayer and exhibit liquid crystalline phases during melting. The metal alkanoate nanoparticles can be calcined to produce metal oxide nanoparticles.Type: GrantFiled: May 10, 2021Date of Patent: October 3, 2023Assignee: National Technology & Engineering Solutions of Sandia, LLCInventors: LaRico Juan Treadwell, Clare Davis-Wheeler
-
Patent number: 8865611Abstract: A method of forming a catalyst, comprising: providing a plurality of support particles and a plurality of mobility-inhibiting particles, wherein each support particle in the plurality of support particles is bonded with its own catalytic particle; and bonding the plurality of mobility-inhibiting particles to the plurality of support particles, wherein each support particle is separated from every other support particle in the plurality of support particles by at least one of the mobility-inhibiting particles, and wherein the mobility-inhibiting particles are configured to prevent the catalytic particles from moving from one support particle to another support particle.Type: GrantFiled: September 13, 2013Date of Patent: October 21, 2014Assignee: SDCmaterials, Inc.Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
-
Patent number: 8852682Abstract: A high strength composite particle comprised of a series of incrementally applied resin microlayer coatings such that each of the microlayer partial coatings are interleaved with each other is described. Methods of making the composite particles, as well as methods of using such particles as a proppant in oil and gas well hydraulic fracturing are also described.Type: GrantFiled: October 18, 2006Date of Patent: October 7, 2014Assignee: Fairmount Minerals, Ltd.Inventors: A. Richard Sinclair, Syed Akbar, Patrick R. Okell
-
Patent number: 8784611Abstract: The invention relates to a process for the production of paper or board comprising: adding a retention system to a stream of stock entering a paper machine head box, directing the stream of stock to a wire, de watering the stream of stock on the wire to form a paper web, and drying the paper web, wherein the retention system comprises a water-soluble cationic polymer, and nanocellulose acting like a micro particle, wherein the nanocellulose is added in an amount of less than 1% as active substance based on dry solids weight of the stock.Type: GrantFiled: November 3, 2010Date of Patent: July 22, 2014Assignee: Kemira OYJInventors: Ari Juppo, Ulf Stenbacka
-
Patent number: 8727112Abstract: Methods and articles of manufacture for storage and shipping of nanowires are disclosed. One disclosed method includes: (a) providing a nanowire suspension including nanowires suspended in a liquid; and (b) disposing the nanowire suspension in a container for storage and shipping, where the container is configured to inhibit agglomeration of nanowires from the nanowire suspension.Type: GrantFiled: June 18, 2013Date of Patent: May 20, 2014Assignee: Innova Dynamics, Inc.Inventors: Michael Eugene Young, Arjun Daniel Srinivas, Matthew R. Robinson
-
Patent number: 8720570Abstract: A method of mitigating corrosion of downhole articles includes mixing a plurality of nanoparticles into a first downhole fluid to form a nanoparticle fluid. The method also includes exposing a surface of a downhole article in a wellbore to the nanoparticle fluid. The method further includes disposing a barrier layer comprising a portion of the nanoparticles on the surface of the article and exposing the surface of the downhole article to a second downhole fluid, wherein the barrier layer is disposed between the second downhole fluid and the surface of the article.Type: GrantFiled: February 4, 2011Date of Patent: May 13, 2014Assignee: Baker Hughes IncorporatedInventors: Kushal Seth, Soma Chakraborty, Allen Grabrysch, Gaurav Agrawal
-
Patent number: 8666547Abstract: Cellular automotion digital material is useable for rapid prototyping and fabrication of continuous string conformations and two- or three-dimensional shapes through actuation of a string, surface, or volume composed of identical discrete units. Each unit is an actuated joint having a single degree of freedom. The actuated joint includes a two-part actuator having an inner active portion and an outer passive portion that are controllably rotatable relative to each other, the outer portion being configured to fit within the housing of an adjacent cellular automotion unit, and a linkage element that includes a main strut and a housing and is connected to the actuator by a pin connector.Type: GrantFiled: March 25, 2010Date of Patent: March 4, 2014Assignee: Massachusetts Institute of TechnologyInventors: Kenneth C. Cheung, Ara Knaian, Neil Gershenfeld
-
Patent number: 8647470Abstract: Process for the production of paper, board and cardboard having high dry strength by addition of an aqueous composition comprising a nanocellulose and at least one polymer selected from the group consisting of the anionic polymers and water-soluble cationic polymers, draining of the paper stock and drying of the paper products.Type: GrantFiled: October 14, 2010Date of Patent: February 11, 2014Assignee: BASF SEInventor: Anton Esser
-
Patent number: 8618020Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.Type: GrantFiled: October 12, 2012Date of Patent: December 31, 2013Assignee: 3M Innovative Properties CompanyInventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
-
Patent number: 8567410Abstract: The present invention relates to aerosols containing magnetic particles, wherein the aerosols comprise magnetic particles and a pharmaceutical active agent. The invention furthermore relates to the use of such aerosols containing magnetic particles for directed magnetic field-guided transfer of the active agents contained therein in aerosol therapy.Type: GrantFiled: August 25, 2006Date of Patent: October 29, 2013Assignee: Ethris GmbHInventors: Carsten Rudolph, Joseph Rosenecker
-
Patent number: 8557727Abstract: A method of forming a catalyst, comprising: providing a plurality of support particles and a plurality of mobility-inhibiting particles, wherein each support particle in the plurality of support particles is bonded with its own catalytic particle; and bonding the plurality of mobility-inhibiting particles to the plurality of support particles, wherein each support particle is separated from every other support particle in the plurality of support particles by at least one of the mobility-inhibiting particles, and wherein the mobility-inhibiting particles are configured to prevent the catalytic particles from moving from one support particle to another support particle.Type: GrantFiled: December 7, 2010Date of Patent: October 15, 2013Assignee: SDCmaterials, Inc.Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
-
Patent number: 8518854Abstract: Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.Type: GrantFiled: October 12, 2012Date of Patent: August 27, 2013Assignee: 3M Innovative Properties CompanyInventors: John T. Brady, Marvin E. Jones, Larry A. Brey, Gina M. Buccellato, Craig S. Chamberlain, John S. Huberty, Allen R. Siedle, Thomas E. Wood, Badri Veeraraghavan, Duane D. Fansler
-
Patent number: 8314048Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.Type: GrantFiled: June 23, 2011Date of Patent: November 20, 2012Assignee: 3M Innovative Properties CompanyInventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
-
Publication number: 20120223565Abstract: A metallic seat structure member with a surface roughened is placed within a forming die, into which synthetic resin is injected for molding. This provides a vehicle seat structure in which leg portions of a strength member made of synthetic resin are fixed to the roughened surface of the seat structure member.Type: ApplicationFiled: September 6, 2010Publication date: September 6, 2012Inventors: Hiroyuki Yasui, Atsushi Sano, Atsushi Nakajima, Antoine Kmeid
-
Patent number: 8094378Abstract: A design method, apparatus, and fabrication method for structures for controlling the flow of electromagnetic energy at a sub-wavelength scale is disclosed. Transformational optics principles are used as a starting point for the design of structures that operate as, for example, hyperlenses or concentrators such that evanescent waves at a first surface are radiated in the far field at a second surface. Plane waves incident at a first surface may be focused to a spot size substantially smaller than a wavelength, so as to interact with objects at the focal point, or be re-radiated.Type: GrantFiled: October 23, 2009Date of Patent: January 10, 2012Assignee: Purdue Research FoundationInventors: Alexander V. Kildishev, Vladimir M. Shalaev
-
Patent number: 8022444Abstract: Provided are a biosensor with a silicon nanowire and a method of manufacturing the same, and more particularly, a biosensor with a silicon nanowire including a defect region formed by irradiation of an electron beam, and a method of manufacturing the same. The biosensor includes: a silicon substrate; a source region disposed on the silicon substrate; a drain region disposed on the silicon substrate; and a silicon nanowire disposed on the source region and the drain region, and having a defect region formed by irradiation of an electron beam. Therefore, by irradiating a certain region of a high-concentration doped silicon nanowire with an electron beam to lower electron mobility in the certain region, it is possible to maintain a low contact resistance between the silicon nanowire and a metal electrode and to lower operation current of a biomaterial detection part, thereby improving sensitivity of the biosensor.Type: GrantFiled: August 20, 2008Date of Patent: September 20, 2011Assignee: Electronics and Telecommunications Research InstituteInventors: Tae Youb Kim, Nae Man Park, Han Young Yu, Moon Gyu Jang, Jong Heon Yang
-
Patent number: 7998431Abstract: An apparatus comprising a substrate having a surface with a volume-tunable-material on the surface and fluid-support-structures over the surface and partially embedded in the volume-tunable-material. Each of said fluid-support-structures has at least one dimension of about 1 millimeter or less, and the fluid-support-structures are moveable in response to a volume transition of the volume-tunable-material.Type: GrantFiled: April 10, 2006Date of Patent: August 16, 2011Assignee: Alcatel LucentInventors: Joanna Aizenberg, Paul Robert Kolodner, Thomas Nikita Krupenkin, Oleksandr Sydorenko, Joseph Ashley Taylor
-
Patent number: 7806183Abstract: Disclosed embodiments relate to well treatment fluids and methods that utilize nano-particles. Exemplary nano-particles are selected from the group consisting of particulate nano-silica, nano-alumina, nano-zinc oxide, nano-boron, nano-iron oxide, and combinations thereof. Embodiments also relate to methods of cementing that include the use of nano-particles. An exemplary method of cementing comprises introducing a cement composition into a subterranean formation, wherein the cement composition comprises cement, water and a particulate nano-silica. Embodiments also relate to use of nano-particles in drilling fluids, completion fluids, stimulation fluids, and well clean-up fluids.Type: GrantFiled: April 20, 2009Date of Patent: October 5, 2010Assignee: Halliburton Energy Services Inc.Inventors: Craig W. Roddy, Jiten Chatterji, Roger Cromwell
-
Patent number: 7784542Abstract: Methods and compositions are provided that may comprise cement, a nano-particle, latex, and water. An embodiment of the present invention includes a method of cementing in a subterranean formation. The method may include introducing a cement composition into the subterranean formation, wherein the cement composition comprises cement, a nano-particle, latex, and water. The method further may include allowing the cement composition to set in the subterranean formation. Another embodiment of the present invention include a cement composition. The cement composition may comprise cement, a nano-particle, latex, and water.Type: GrantFiled: May 27, 2009Date of Patent: August 31, 2010Assignee: Halliburton Energy Services, Inc.Inventors: Craig W. Roddy, Jiten Chatterji, Roger Cromwell, Rahul Chandrakant Patil, Abhijit Tarafdar, Abhimanyu Deshpande, Christopher Lynn Gordon
-
Patent number: 7727931Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.Type: GrantFiled: September 23, 2004Date of Patent: June 1, 2010Assignee: 3M Innovative Properties CompanyInventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
-
Patent number: 7713349Abstract: Coatings including pigments comprising substrate particles with ultrafine metal oxide particles deposited on the surfaces thereof and made by a plasma process are disclosed. The substrate particles may comprise an oxide such as SiO2, Al2O3, Bi2O3 and the like. The ultrafine metal oxide particles may be partially oxidized such as Cu2O, Ti3O4 and the like. The pigments may be used in coating compositions in which the substrate particles substantially match the refractive index of the coating composition base, and the ultrafine metal oxide particles provide the desired reflectance characteristics for the coating.Type: GrantFiled: January 22, 2008Date of Patent: May 11, 2010Assignee: PPG Industries Ohio, Inc.Inventors: Cheng-Hung Hung, Noel R. Vanier
-
Patent number: 7633148Abstract: A plurality of conductive pads (2) are formed on a mounting surface of a mounting board. Conductive pads (11) are formed on a principal surface of a semiconductor chip (10) at positions corresponding to the conductive pads of the mounting board, when the principal surface faces toward the mounting board. A plurality of conductive nanotubes (12) extend from the conductive pads of one of the mounting board and the semiconductor chip. A press mechanism (3) presses the semiconductor chip against the mounting board and restricts a position of the semiconductor chip on the mounting surface to mount the semiconductor chip on the mounting board, in a state that tips of the conductive nanotubes are in contact with the corresponding conductive pads not formed with the conductive nanotubes.Type: GrantFiled: February 15, 2007Date of Patent: December 15, 2009Assignee: Fujitsu LimitedInventors: Yuji Awano, Masataka Mizukoshi, Taisuke Iwai, Tomoji Nakamura
-
Patent number: 7611579Abstract: A system for synthesizing nanostructures using chemical vapor deposition (CVD) is provided. The system includes a housing, a porous substrate within the housing, and on a downstream surface of the substrate, a plurality of catalyst particles from which nanostructures can be synthesized upon interaction with a reaction gas moving through the porous substrate. Electrodes may be provided to generate an electric field to support the nanostructures during growth. A method for synthesizing extended length nanostructures is also provided. The nanostructures are useful as heat conductors, heat sinks, windings for electric motors, solenoid, transformers, for making fabric, protective armor, as well as other applications.Type: GrantFiled: January 14, 2005Date of Patent: November 3, 2009Assignee: Nanocomp Technologies, Inc.Inventors: David Lashmore, Joseph J. Brown, Robert C. Dean, Jr., Peter L. Antoinette
-
Patent number: 7569503Abstract: Embodiments of the present invention are provided for improved contact doping and annealing systems and processes. In embodiments, a plasma ion immersion implantation (PIII) process is used for contact doping of nanowires and other nanoelement based thin film devices. According to further embodiments of the present invention, pulsed laser annealing using laser energy at relatively low laser fluences below about 100 mJ/cm2 (e.g., less than about 50 mJ/cm2, e.g., between about 2 and 18 mJ/cm2) is used to anneal nanowire and other nanoelement-based devices on substrates, such as low temperature flexible substrates, e.g., plastic substrates.Type: GrantFiled: November 10, 2005Date of Patent: August 4, 2009Assignee: Nanosys, Inc.Inventors: Yaoling Pan, David P. Stumbo
-
Patent number: 7559369Abstract: Disclosed embodiments relate to well treatment fluids and methods that utilize nano-particles. Exemplary nano-particles are selected from the group consisting of particulate nano-silica, nano-alumina, nano-zinc oxide, nano-boron, nano-iron oxide, and combinations thereof. Embodiments also relate to methods of cementing that include the use of nano-particles. An exemplary method of cementing comprises introducing a cement composition into a subterranean formation, wherein the cement composition comprises cement, water and a particulate nano-silica. Embodiments also relate to use of nano-particles in drilling fluids, completion fluids, stimulation fluids, and well clean-up fluids.Type: GrantFiled: May 10, 2007Date of Patent: July 14, 2009Assignee: Halliubrton Energy Services, Inc.Inventors: Craig W. Roddy, Jiten Chatterji, Roger Cromwell
-
Publication number: 20090135982Abstract: A neutron generator includes an ion source disposed in a pressurized environment containing an ionizable gas. The ion source includes a substrate with a bundle of carbon nanotubes extending therefrom. The ends of the nanotubes are spaced from a grid. Ion source voltage supply circuitry supplies a positive voltage potential between the substrate and the grid of the ion source to cause ionization of the ionizable gas and emission of ions through the grid. An ion accelerator section is disposed between the ion source and a target. The ion accelerator section accelerates ions that pass through the grid towards the target such that collisions of the ions with the target cause the target to generate and emit neutrons therefrom. The ion source, accelerator section and target are housed in a sealed tube and preferably the carbon nanotubes of the bundle are highly ordered with at least 106 carbon nanotubes per cm2 that extend in a direction substantially parallel to the central axis of the tube.Type: ApplicationFiled: November 28, 2007Publication date: May 28, 2009Applicant: SCHLUMBERGER TECHNOLOGY CORPORATIONInventor: Joel L. Groves
-
Patent number: 7501095Abstract: The invention provides an on-line sampling apparatus for the metal nanoparticle fluid of the vacuum submerged arc process and the method thereof, using the principle of the pressure difference between the vacuum pump and the vacuum chamber and the constant temperature design of the sample pipeline to make the sample precisely be caught and flow into the predetermined collector, and the disadvantage of the vaporization of the sample due to the temperature rise caused by the ambient temperature can be prevented. Further, the invention integrates with a particle size analysis apparatus to carry out real time measurement and data analysis of the nanoparticle fluid with real time process characteristics, wherein the nanoparticle fluid is caught from the nanofluid process line, thus, the optimal design work of the process and the system parameters and particle quality monitoring may be proceeded efficiently.Type: GrantFiled: February 5, 2004Date of Patent: March 10, 2009Assignee: National Taipei University of TechnologyInventors: Liang-Chia Chen, Tshih Tsung, Jen-Yan Sun, Hong-Ming Lin
-
Publication number: 20080159906Abstract: A method for manufacturing a composite metal material combined with a nanocarbon material comprises heating a metal alloy to a half-melted state in which both liquid and solid phases are present. Next, a nongraphitized nanocarbon material is added to the half-melted metal alloy and stirred to form a composite metal material combined with a nanocarbon.Type: ApplicationFiled: June 16, 2007Publication date: July 3, 2008Inventors: Masashi Suganuma, Tomoyuki Sato, Atsushi Kato
-
Publication number: 20080083484Abstract: The invention provides a method to form a pattern of a functional material on a substrate. The method uses an elastomeric stamp having a relief structure with a raised surface and having a modulus of elasticity of at least 10 MegaPascal. A liquid composition of the functional material and a liquid is applied to the relief structure and the liquid is removed to form a film on the raised surface. The elastomeric stamp transfers the functional material from the raised surface to the substrate to form a pattern of the functional material on the substrate. The method is suitable for the fabrication of microcircuitry for electronic devices and components.Type: ApplicationFiled: September 28, 2006Publication date: April 10, 2008Inventors: Graciela Beatriz Blanchet, Hee Hyun Lee, Gary Delmar Jaycox
-
Patent number: 7344617Abstract: This invention provides novel nanofibers and nanofiber structures which posses adherent properties, as well as the use of such nanofibers and nanofiber comprising structures in the coupling and/or joining together of articles or material.Type: GrantFiled: March 14, 2006Date of Patent: March 18, 2008Assignee: Nanosys, Inc.Inventor: Robert Dubrow
-
Publication number: 20080016819Abstract: A door skin adapted for construction of a door assembly is provided. The door skin is embodied as a rectangular solid sheet having interior and exterior opposing surfaces. The solid sheet contains a polymeric material and a nanocomponent. Also provided are door assemblies, and related methods.Type: ApplicationFiled: July 20, 2007Publication date: January 24, 2008Inventors: Liqun Xu, Jim Pfau
-
Patent number: 7255328Abstract: A gate valve has a body, the body having a cavity and a flow passage intersecting the cavity. A seat ring is mounted to the body at the intersection of the flow passage and the cavity, the seat ring having an engaging face. A gate in the cavity has an engaging face that slidingly engages the face of the seat ring while being moved between open and closed positions. A polymer coating is on at least one of the faces. The polymer contains a quantity of carbon nanotubes for stiffening.Type: GrantFiled: August 29, 2005Date of Patent: August 14, 2007Assignee: Vetco Gray Inc.Inventor: Rick C. Hunter
-
Patent number: 7242601Abstract: A method for constructing and addressing a nanoscale memory with known addresses and for tolerating defects which may arise during manufacture or device operational lifetime. During construction, nanoscale wires with addresses are stochastically assembled. During a programming phase, nanoscale wires are stochastically selected using their stochastic addresses through microscale inputs and a desired address code is associated with the selected nanoscale wires. Memory addresses are associated to the codes and then selected using the known codes during read/write operations from/to the memory.Type: GrantFiled: May 25, 2004Date of Patent: July 10, 2007Assignee: California Institute of TechnologyInventors: André Dehon, Helia Naeimi
-
Patent number: 7172747Abstract: Spiral shaped fibers were utilized to prepare completely novel metal oxide nanotubes comprising solely metal oxides. The metal oxide nanotubes comprise solely a hollow cylinder shaped metal oxide which may contain hydroxyl groups constituting a double helix and having hole diameter distributions containing two peak hole diameters ranging from 1 to 2 nm and from 3 to 7 nm. The tubes may be obtained by forming spiral shaped fibers from a solution of compound 1 and compound 2 and using the fibers as a template for making the nanotubes. The hydrogen adsorption and storage capacity of the metal oxide nanotubes are extremely good.Type: GrantFiled: March 26, 2003Date of Patent: February 6, 2007Assignees: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and TechnologyInventors: Toshimi Shimizu, John Hwa Jung
-
Patent number: 7147834Abstract: A low-temperature hydrothermal reaction is provided to generate crystalline perovskite nanotubes such as barium titanate (BaTiO3) and strontium titanate (SrTiO3) that have an outer diameter from about 1 nm to about 500 nm and a length from about 10 nm to about 10 micron. The low-temperature hydrothermal reaction includes the use of a metal oxide nanotube structural template, i.e., precursor. These titanate nanotubes have been characterized by means of X-ray diffraction and transmission electron microscopy, coupled with energy dispersive X-ray analysis and selected area electron diffraction (SAED).Type: GrantFiled: August 11, 2004Date of Patent: December 12, 2006Assignee: The Research Foundation of State University of New YorkInventors: Stanislaus Wong, Yuanbing Mao
-
Patent number: 7135231Abstract: A high strength composite particle comprised of a series of incrementally applied resin microlayer coatings such that each of the microlayer partial coatings are interleaved with each other is described. Methods of making the composite particles, as well as methods of using such particles as a proppant in oil and gas well hydraulic fracturing are also described.Type: GrantFiled: July 1, 2003Date of Patent: November 14, 2006Assignee: Fairmont Minerals, Ltd.Inventors: A. Richard Sinclair, Syed Akbar, Patrick R. Okell
-
Patent number: 7091084Abstract: The present invention discloses a method including providing a substrate; forming a lower conductor over the substrate; forming a conducting nanostructure over the lower conductor; forming a thin dielectric over the conducting nanostructure; and forming an upper conductor over the thin dielectric. The present invention further discloses a device including a substrate; a lower conductor located over the substrate; a conducting nanostructure located over the lower conductor; a thin dielectric located over the conducting nanostructure; and an upper conductor located over the thin dielectric.Type: GrantFiled: January 26, 2005Date of Patent: August 15, 2006Assignee: Intel CorporationInventors: Scot A. Kellar, Sarah E. Kim