Abstract: An aircraft having a frame assembly that supports a compressor having an outer shell that defines front and rear nozzle ports with rotatable nozzles for selectable vertical or horizontal thrust. The inner shell and the outer shell define an intake gap therebetween such as an annulus. A first fan unit within the inner shell and is configured to exhaust air through the front nozzle ports. A second fan unit within the outer shell intakes air through the intake gap and exhausts air through the rear nozzle ports. The fan units are preferably connected to one another via a drive shaft that is surrounded by a streamlining tube. The fan units each include a plurality of fans having stators therebetween. The stators have a plurality of stator arms with a wing structure pivotally attached to the trailing edge for angling air flow from a front to a rear fan.
Abstract: In an embodiment, a vertical-lift augmentation system for an aircraft includes a fan bank mounted to the aircraft in proximity to a wing of the aircraft, where the fan bank may include at least one fan. The vertical-lift augmentation system also includes a panel movably attached to the aircraft in relation to the fan bank, where the panel is adjustable between at least a first position in which the panel encloses the fan bank in the aircraft and a second position in which the panel at least partially exposes the fan bank.
Abstract: A hybrid axial/cross-flow fan aerial vehicle includes both axial and cross-flow fan propulsion for efficient hover and forward flight performance. The axial fans provide primarily vertical thrust, while the cross-flow fan provides horizontal, as well as vertical, thrust. The vehicle takes off vertically, is capable of hover, and can fly forward by vectoring the thrust of the cross-flow fan system. This approach provides large internal cargo capacity and high forward flight speeds.