Consisting Of Several Layers {g11b 5/66} Patents (Class G9B/5.241)
  • Publication number: 20140002929
    Abstract: A manufacturing method of a magnetic recording medium includes follows: forming a magnetic recording layer on a substrate; forming an under layer and a metal release layer that forms an alloy with the under layer on the magnetic recording layer in this order and forming an alloyed release layer by alloying the under layer and the metal release layer; forming a mask layer on the alloyed release layer; forming a resist layer on the mask layer; providing a protrusion-recess pattern by patterning the resist layer; transferring the protrusion-recess pattern to the mask layer; transferring the protrusion-recess pattern to the alloyed release layer; transferring the protrusion-recess pattern to the magnetic recording layer; dissolving the alloyed release layer by using a stripping solution and removing a layer formed on the alloyed release layer from an upper side of the magnetic recording layer.
    Type: Application
    Filed: October 24, 2012
    Publication date: January 2, 2014
    Inventors: Kazutaka TAKIZAWA, Akira Watanabe, Kaori Kimura, Takeshi Iwasaki, Akihiko Takeo
  • Publication number: 20130250453
    Abstract: According to one embodiment, a perpendicular magnetic recording medium including a soft magnetic under layer, a nonmagnetic seed layer consisting of AgGe, a nonmagnetic interlayer made of Ru or an Ru alloy, and a perpendicular magnetic recording layer, laminated on the nonmagnetic substrate is provided. The nonmagnetic seed layer is an layer containing Ag grains having an fcc structure and an amorphous Ge grain boundary, and the Ag grain surface is higher than the Ge grain boundary surface.
    Type: Application
    Filed: August 28, 2012
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takeshi IWASAKI
  • Publication number: 20130235490
    Abstract: An embodiment of the invention provides an apparatus that includes: a perpendicular magnetic recording medium including a substrate, a soft under layer above the substrate, a seed layer structure above the soft under layer, wherein the seed layer structure contains Ruthenium; and a magnetic recording layer above the seed layer structure.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventors: Hoa Van Do, Kentaro Takano, Qi-Fan Xiao, Chu Sy Tran
  • Publication number: 20130155542
    Abstract: In one embodiment, a perpendicular magnetic recording medium includes an oxide recording layer including an oxide and a non-oxide recording layer which does not contain an oxide positioned above the oxide recording layer. The oxide recording layer includes a region R1 where a grain boundary width in a direction parallel to a plane of formation of R1 increases therealong from a lowermost portion of the oxide recording layer toward a medium surface, a region R3 positioned above R1 wherein a grain boundary width increases therealong toward the medium surface, a region R2 where a grain boundary width of R2 decreases therealong from R1 to R3, with R2 being positioned between R1 and R3, and a region R4 where a grain boundary width of R4 decreases therealong from R3 toward the medium surface, with R4 being positioned above R3 and near an uppermost portion of the oxide recording layer.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 20, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Shun Tonooka, Kiwamu Tanahashi, Hiroyuki Nakagawa, Ichiro Tamai
  • Publication number: 20120275059
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, an auxiliary layer formed on the substrate, and at least one perpendicular magnetic recording layer formed on the auxiliary layer. The perpendicular magnetic recording layer includes a magnetic dot pattern. The perpendicular magnetic recording layer is made of an alloy material containing one element selected from iron and cobalt, and one element selected from platinum and palladium. This alloy material has the L10 structure, and is (001)-oriented. The auxiliary layer includes a dot-like first region covered with the magnetic dot pattern, and a second region not covered with the magnetic dot pattern. The first region is made of one metal selected from (100)-oriented nickel and (100)-oriented iron. The second region contains an oxide of the metal used in the first region.
    Type: Application
    Filed: January 16, 2012
    Publication date: November 1, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoyuki Maeda, Yousuke Isowaki, Akira Watanabe
  • Publication number: 20120275058
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, an auxiliary layer formed on the substrate, and at least one perpendicular magnetic recording layer formed on the auxiliary layer. The perpendicular magnetic recording layer includes a magnetic dot pattern. The perpendicular magnetic recording layer is made of an alloy material containing one element selected from iron and cobalt, and one element selected from platinum and palladium. This alloy material has the L10 structure, and is (001)-oriented. The auxiliary layer includes a dot-like first region covered with the magnetic dot pattern, and a second region not covered with the magnetic dot pattern. The first region is made of a (100)-oriented nickel oxide. The second region contains nickel used in the first region as a main component.
    Type: Application
    Filed: January 16, 2012
    Publication date: November 1, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoyuki Maeda, Yousuke Isowaki, Akira Watanabe
  • Publication number: 20120236694
    Abstract: A patterned perpendicular magnetic recording disk has a Co-alloy recording layer patterned into discrete data islands arranged in concentric tracks and exhibits a narrow switching field distribution (SFD). The disk includes a substrate, a NiTa alloy planarizing layer on the substrate, a nonmagnetic Ru-containing underlayer on the planarizing layer, an oxide-free Co alloy magnetic recording layer, and an ultrathin oxide film between the Ru-containing layer and the Co-alloy magnetic recording layer. The oxide film may be an oxide selected from a Ta-oxide, a Co-oxide and a Ti-oxide, and is ultrathin so that it may be considered a discontinuous film. The planarizing layer and ultrathin oxide film improve the growth homogeneity of the Co-alloy recording layer, so that the patterned disk with data islands shows significantly reduced SFD.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Inventors: Olav Hellwig, Ernesto E. Marinero, Dieter K. Weller
  • Publication number: 20120207003
    Abstract: A heat-assisted magnetic recording medium includes a substrate, a plurality of foundation layers, and a magnetic layer. The plurality of foundation layers are provided on the substrate and include a first layer containing MnO. The magnetic layer is provided on the plurality of layers and includes an alloy as a main ingredient. The alloy has an L10 structure.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Applicant: Showa Denko K.K.
    Inventors: Tetsuya Kanbe, Kazuya Niwa, Katsuya Hara
  • Publication number: 20120147718
    Abstract: A bit-patterned media (BPM) magnetic recording disk has discrete data islands with an exchange-coupled composite (ECC) recording layer (RL) formed of a high-anisotropy chemically-ordered FePt alloy lower layer, a lower-anisotropy Co/X laminate or multilayer (ML) upper layer with perpendicular magnetic anisotropy, wherein X is Pt, Pd or Ni, and an optional nonmagnetic separation layer or coupling layer (CL) between the FePt layer and the ML. The FePt alloy layer is sputter deposited onto a seed layer structure, like a CrRu/Pt bilayer, while the disk substrate is maintained at an elevated temperature to assure the high anisotropy field Hk is achieved. The high-temperature deposition together with the CrRu/Pt seed layer structure provide a very smooth surface for subsequent deposition of the ML (and optional CL). The separate Co/X ML has by itself a very narrow switching field distribution (SFD), so that the SFD of the ECC RL is much narrower than the SFD for the FePt layer alone.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Inventors: Olav Hellwig, Andrew Thomas McCallum, Dieter K. Weller
  • Publication number: 20120050914
    Abstract: A perpendicular magnetic recording medium that is excellent in terms of electromagnetic conversion characteristics and can achieve the demand for the recording density growth, and a magnetic recording and reproducing apparatus provided with the perpendicular magnetic recording medium are provided. The perpendicular magnetic recording medium has at least a backing layer, an underlayer, an intermediate layer, and a perpendicular magnetic recording layer sequentially laminated on a non-magnetic substrate, in which the backing layer includes at least a soft magnetic film having an amorphous structure; the underlayer includes a first underlayer and a second underlayer laminated from the non-magnetic substrate side; the first underlayer is an fcc-structured alloy layer including an fcc-structured element and a bcc-structured element, the second underlayer includes a NiW alloy; and the intermediate layer includes Ru or a Ru alloy.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 1, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Hideaki TAKAHOSHI, Takahiro UKAI
  • Publication number: 20120044595
    Abstract: In one embodiment, a perpendicular magnetic recording medium (PMRM) includes a first interlayer comprising Ru or a Ru alloy, a second interlayer above the first interlayer comprising Ru or a Ru alloy, and a third interlayer formed between the first interlayer and the second interlayer that reduces an average cluster size of the second interlayer. In another embodiment, a PMRM includes a first interlayer comprising Ru or a Ru alloy, a second interlayer above the first interlayer comprising Ru or a Ru alloy, and a third interlayer formed between the first interlayer and the second interlayer that reduces an average cluster size of the second interlayer. The third interlayer has a thickness of between about 1.0 nm and about 3.0 nm and has a structure selected from a group consisting of: BCC, B2, C11b, L21, and D03. Other PMRMs and methods of fabrication are presented as well.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yotsuo Yahisa, Ichiro Tamai, Akemi Hirotsune
  • Publication number: 20110242702
    Abstract: According to one embodiment, a perpendicular magnetic recording layer comprises a granular film type recording layer and a continuous film type recording layer. The granular film type recording layer comprises a first granular film type recording layer in which magnetic crystal grains in a film plane has an average crystal grain diameter of 3 to 7 nm, and a second granular film type recording layer including magnetic crystal grains having an in plane average crystal grain diameter larger than that of the magnetic crystal grains of the first granular film type recording layer.
    Type: Application
    Filed: March 18, 2011
    Publication date: October 6, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tomoyuki Maeda
  • Publication number: 20110122525
    Abstract: According to one embodiment, a magnetic recording medium includes a magnetic recording layer formed above a substrate, comprising: a first magnetic layer formed from a [Co/Pt]n multilayered film, wherein the first magnetic layer has a face-centered cubic (fcc) (111) crystal structure, the (111) direction being perpendicular to a film surface thereof, and a second magnetic layer comprising a CoCrPt or CoCrPt alloy film formed above the first magnetic layer, wherein the second magnetic layer has a hexagonal close packed (hcp) (00.1) crystal structure, the (00.1) direction being perpendicular to a film surface thereof. According to another embodiment, a system includes a magnetic recording medium as described above, a magnetic head for reading from and/or writing to the magnetic recording medium, a magnetic head slider for supporting the magnetic head, and a control unit coupled to the magnetic head for controlling operation of the magnetic head.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 26, 2011
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hiroaki Nemoto, Kiwamu Tanahashi, Hiroyuki Nakagawa
  • Publication number: 20110116189
    Abstract: The present invention relates to a perpendicular magnetic recording medium including at least a backing layer, an orientation control layer, a magnetic recording layer and a protective layer provided on top of a non-magnetic substrate, wherein the orientation control layer is composed of two or more layers including a seed layer and an intermediate layer, formed in that order from the substrate side, and the seed layer is formed of a material containing 5 to 25 atomic % of an element for which, in a phase diagram, the solid solution region with an element having a face-centered cubic structure is not more than 1 atomic %. Also provided is a magnetic recording/reproducing device that includes the magnetic recording medium and a magnetic head for recording and reproducing information on the magnetic recording medium.
    Type: Application
    Filed: September 2, 2008
    Publication date: May 19, 2011
    Applicant: SHOWA DENKO K.K.
    Inventor: Yuzo Sasaki
  • Publication number: 20110032638
    Abstract: Embodiments of the invention provide a perpendicular magnetic recording medium improved for fly ability, high in read signal quality, and capable of suppressing magnetic decay of recorded magnetization to be caused by stray fields. In one embodiment, a perpendicular recording layer is formed over a substrate with a soft magnetic underlayer therebetween, then an amorphous or nano-crystalline layer is formed between the substrate and the soft magnetic underlayer. The soft magnetic underlayer includes first and second amorphous soft magnetic layers, as well as a nonmagnetic layer formed between those first and second amorphous soft magnetic layers. The first and second amorphous soft magnetic layers are given uniaxial anisotropy in the radial direction of the substrate respectively and coupled with each other antiferromagnetically.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 10, 2011
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Reiko Arai, Kiwamu Tanahashi, Yoshinori Honda, Mineaki Kodama
  • Publication number: 20100246045
    Abstract: Disclosed is a magnetic recording medium comprising a substrate, a magnetic recording layer formed on the substrate to record magnetic information, and a piezoelectric material disposed adjacent to the magnetic recording layer and capable of contracting and expanding. Preferably, piezoelectric members made of the piezoelectric material are formed in such a manner as to be spaced a predetermined distance apart from each other on the substrate in a direction crossing a track on the magnetic recording layer, and the magnetic recording layer is formed between the piezoelectric members. When subjected to laser light or ultraviolet radiation, the piezoelectric material contracts or expands at least in the direction crossing the track. The piezoelectric material is selected from the group consisting of lead lanthanum zirconate titanate, barium titanate, and potassium niobate.
    Type: Application
    Filed: October 12, 2007
    Publication date: September 30, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Hisato Shibata, Hideaki Takahoshi, Yuki Yoshida, Akira Kikuchi
  • Publication number: 20100232054
    Abstract: An object of the invention is to provide a magnetic recording medium which exhibits an excellent corrosion resistance. To this end, proposed is a magnetic recording medium including a magnetic recording layer in which: a magnetic body and a filling body alternately appear along a recording surface; and a layer made of a passivated metal or an alloy containing at least one passivated metal is formed in an interface portion between an area of the magnetic body and an area of the filling body.
    Type: Application
    Filed: February 19, 2010
    Publication date: September 16, 2010
    Inventors: Katsumi MABUCHI, Kyoko HONBO, Nobuhiro KUBO
  • Publication number: 20100188772
    Abstract: There are provided a method for manufacturing a magnetic recording medium which is excellent in terms of both the recording and reproduction characteristics and the thermal fluctuation characteristics without reducing the density and hardness of the perpendicular magnetic layer; a magnetic recording medium; and a magnetic recording and reproducing apparatus with which an excellent recording density is achieved, wherein, in the method for manufacturing the magnetic recording medium, at least a portion of the perpendicular magnetic layer 4 is formed as a magnetic layer having a granular structure that contains Co as a major component and also contains an oxide of at least one nonmagnetic metal selected from the group consisting of Cr, Si, Ta, Al, Ti, W and Mg; a target for forming the perpendicular magnetic layer 4 by the sputtering process is prepared so as to include an oxide of Co and a compound of Co and at least one nonmagnetic metal selected from the group consisting of Cr, Si, Ta, Al, Ti, W and Mg, and t
    Type: Application
    Filed: January 22, 2010
    Publication date: July 29, 2010
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOSHIBA, TOHOKU UNIVERSITY
    Inventors: Shingo Sasaki, Shin Saito, Migaku Takahashi, Atsushi Hashimoto, Yuzo Sasaki, Gohei Kurokawa, Tomoyuki Maeda, Akihiko Takeo
  • Publication number: 20100128390
    Abstract: The invention provides a method of forming a magnetic layer with stable magnetic properties and stable recording-and-reproducing properties, by uniformizing the distribution of oxygen radical concentration upon reactive sputtering, and thereby uniformizing the concentration of oxygen to be taken into the magnetic layer along the plane direction.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 27, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Takashi TANAKA
  • Publication number: 20100110584
    Abstract: A method is described for improving recording performance of a perpendicular media. The method includes using a dual oxide layer as a sublayer of a magnetic recording layer of the perpendicular media. The dual oxide sublayer improves recording performance, increases resistance to corrosion and allows for a thinner exchange break layer. The dual oxide layer generally includes oxides of tantalum and one of silicon or boron.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: Qing Dai, Hoa Van Do, Mary Frances Minardi, Kentaro Takano, Kai Tang, Jinliu Wang
  • Publication number: 20100079911
    Abstract: A perpendicular magnetic recording medium is provided, which has a backing layer, a primer layer, an intermediate layer and at least one perpendicular magnetic recording layer, and is characterized in that the perpendicular magnetic recording layer contains Co and Cr, and at least one of the perpendicular magnetic recording layer or layers has a granular structure comprising ferromagnetic crystal grains and grain boundaries comprised of non-magnetic tungsten oxide. The perpendicular magnetic recording layer may be a double-layered structure comprising the tungsten oxide grain boundary-containing layer and a Cr oxide, Si oxide, Ta oxide or Ti oxide grain boundary-containing layer formed on the tungsten oxide grain boundary-containing layer. The perpendicular magnetic recording medium exhibits good perpendicular orientation and has ferromagnetic crystal grains with extremely small grain size, and thus, is superior in high recording density characteristic.
    Type: Application
    Filed: April 28, 2008
    Publication date: April 1, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Sakaguchi, Gouhei Kurokawa, Yuzo Sasaki, Tatsu Komatsuda, Amarendra Singh
  • Publication number: 20100067149
    Abstract: Perpendicular magnetic recording media has been enhanced by controlling the initial growth of magnetic oxide layers and increased magnetic isolation between the grains in the initial magnetic layer. An onset magnetic oxide layer is sputter deposited in an argon-oxygen gas mixture between the main CoPtCr-oxide magnetic layers and the underlying Ru layer. The insertion of the onset magnetic oxide layer enhances the coercivity of the oxide magnetic layers and also improves the nucleation field. The media signal-to-noise ratio and bit error rate also are significantly improved due to the improvement of the initial segregation of Co magnetic grains in the magnetic oxide layers.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 18, 2010
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS BV
    Inventors: Xiaoping Bian, Jyh-Kau Chang, Weikang Shen, Zhupei Shi, Kai Tang
  • Publication number: 20100039730
    Abstract: The present invention provides a magnetic recording medium which is capable of improving the perpendicular orientation of a perpendicular magnetic recording layer while maintaining a writing performance during recording and obtaining both an improvement in the perpendicular orientation and fine magnetic crystal particles with a uniform diameter, and which enables information to be recorded or reproduced at high density, a method of manufacturing the same, and a magnetic recording/reproducing apparatus. A magnetic recording medium 10 according to the present invention includes at least a soft magnetic underlayer 2, an orientation control layer 3, a magnetic recording layer 4, and a protective layer 5 formed on a non-magnetic substrate 1. The orientation control layer 3 has a seed layer 6 and an intermediate layer 7. The seed layer 6 is made of a Cu—Ti alloy that has a face-centered cubic structure and includes Cu as a main component.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 18, 2010
    Applicants: SHOWA DENKO K. K., KABUSHIKI KAISHA TOSHIBA, TOHOKU UNIVERSITY
    Inventors: Shinichi ISHIBASHI, Migaku TAKAHASHI, Shin SAITO, Yuzo SASAKI, Atsushi HASHIMOTO, Gohei KUROKAWA, Tomoyuki MAEDA, Akihiko TAKEO
  • Publication number: 20100014191
    Abstract: This invention provides a perpendicular magnetic recording medium which has magnetic layers of a stabilized laminated structure and excels in the recording and reproducing property. The perpendicular magnetic recording medium of this invention comprises at least an underlayer, a seed layer, a first intermediate layer, a second intermediate layer, a first magnetic recording layer, a second magnetic recording layer, and a protecting layer laminated in the order mentioned on a nonmagnetic substrate. The first intermediate layer is formed of an alloy having Ru as a main constituent and the second intermediate layer is formed of a CoCr alloy containing no Ru. An alloy layer of a composition having Ru element as an essential constituent is sandwiched between the first magnetic recording layer and the second magnetic recording layer. Further, the first magnetic recording layer is formed of a magnetic alloy containing Ru.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 21, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Hiroshi KANAZAWA
  • Publication number: 20090296274
    Abstract: A perpendicular magnetic recording medium includes a nonmagnetic seed layer, a nonmagnetic intermediate layer provided on the nonmagnetic seed layer, and a perpendicular recording layer provided on the nonmagnetic intermediate layer. The nonmagnetic seed layer includes a first seed layer made of a Ni alloy having a fcc structure, and a second seed layer provided between the first seed layer and the nonmagnetic intermediate layer and made of a Ni alloy having a fcc structure. A content of one or more elements other than Ni within the Ni alloy forming the second seed layer and having a Goldschmidt radius greater than that of Ni is larger than a content of one or more elements other than Ni within the Ni alloy forming the first seed layer and having a Goldschmidt radius greater than that of Ni.
    Type: Application
    Filed: March 12, 2009
    Publication date: December 3, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Ryosaku Inamura, Yuta Toyoda
  • Publication number: 20090244771
    Abstract: A disclosed magnetic recording medium includes a substrate; a soft magnetic backing layer disposed on the substrate; an intermediate layer disposed on the soft magnetic backing layer; a first recording layer disposed on the intermediate layer and having perpendicular magnetic anisotropy; an exchange-coupling-energy control layer disposed on the first recording layer and made of a granular material in which oxide is added to metal including ruthenium; and a second recording layer disposed on the exchange-coupling-energy control layer, having perpendicular magnetic anisotropy, and ferromagnetically coupled with the first recording layer via the exchange-coupling-energy control layer.
    Type: Application
    Filed: October 31, 2008
    Publication date: October 1, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Jun Taguchi, Ryo Kurita
  • Publication number: 20090201607
    Abstract: It is made possible to provide a patterned perpendicular magnetic recording medium that has smaller write magnetic field and the variation of magnetic characteristics in the bit regions, generates fewer reversed magnetic domains in the position control information regions of the head, and has excellent thermal stability. A patterned perpendicular magnetic recording medium includes: a nonmagnetic substrate; a soft magnetic base layer formed on the nonmagnetic substrate; a nonmagnetic intermediate layer formed on the soft magnetic base layer; and a perpendicular magnetic recording layer formed on the nonmagnetic intermediate layer, and including a stacked structure of a CoPt-based crystalline film having a Pt content in the range of 5 atomic percent to 35 atomic percent and a rare-earth and transition metal alloy amorphous film formed on the CoPt-based crystalline film. The CoPt-based crystalline film and the rare-earth and transition metal alloy amorphous film are exchange-coupled.
    Type: Application
    Filed: January 29, 2009
    Publication date: August 13, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yousuke Isowaki, Tomoyuki Maeda, Yoshiyuki Kamata
  • Publication number: 20090161255
    Abstract: According to one embodiment, a perpendicular magnetic recording medium includes a substrate, soft magnetic underlying layer, nonmagnetic underlying layer, and perpendicular magnetic recording layer. The perpendicular magnetic recording layer has an array of magnetic structures each corresponding to 1 bit of recording information, and includes a crystalline hard magnetic recording layer having perpendicular magnetic anisotropy, and an amorphous soft magnetic recording layer. The hard and soft magnetic recording layers are coupled by exchange coupling.
    Type: Application
    Filed: September 30, 2008
    Publication date: June 25, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tomoyuki Maeda
  • Publication number: 20090141399
    Abstract: A magnetic-recording medium which is provided on a nonmagnetic substrate with at least an orientation-controlling layer for controlling the orientation of a layer formed directly thereon, a perpendicularly magnetic layer having an easily magnetizing axis oriented mainly perpendicularly relative to the nonmagnetic substrate, and a protective layer. The perpendicularly magnetic layer includes two or more magnetic layers, at least one of the magnetic layers is a layer having Co as a main component and containing Pt as well and containing an oxide, and at least another of the magnetic layers is a layer having Co as a main component and containing Cr as well and containing no oxide.
    Type: Application
    Filed: November 20, 2008
    Publication date: June 4, 2009
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira SAKAWAKI, Kenji Shimizu, Kazuo Kobayashi, Hiroshi Sakai, Soichi Oikawa, Takeshi Iwasaki, Tomoyuki Maeda, Futoshi Nakamura
  • Publication number: 20090116137
    Abstract: Embodiments of the present invention provide a perpendicular magnetic recoding medium capable of decreasing exchange coupling between crystal grains while suppressing increase in the crystal grain size of the magnetic recording layer. According to one embodiment, a perpendicular magnetic recoding medium is formed by stacking a seed layer, an intermediate layer, a magnetic recording layer, and a protecting layer all above a substrate. The magnetic recording layer has a granular structure constituted of a plurality of columnar grains comprising a CoCrPt alloy and a grain boundary containing an oxide.
    Type: Application
    Filed: October 21, 2008
    Publication date: May 7, 2009
    Inventors: Ikuko Takekuma, Hiroaki Nemoto, Hiroyuki Nakagawa
  • Publication number: 20090086372
    Abstract: Embodiments of the present invention help to provide a discrete track medium for realizing a high track density in a low price by adopting a configuration, in which filling of a non-magnetic material into a guard band portion and smoothing processing of a medium surface are not required. According to one embodiment, a perpendicular magnetic recording medium, on the non-magnetic substrate, includes at least: a soft magnetic underlayer; a first recording layer including a crystal grain having a magnetic property and a non-magnetic grain boundary having an oxide, as a main component, surrounding the crystal grain; a second recording layer containing a ferromagnetic metal as a main component and not containing an oxide; and at least one non-magnetic layer provided between the first recording layer and the second recording layer.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 2, 2009
    Inventors: Takayuki Ichihara, Masayoshi Shimizu
  • Publication number: 20090034119
    Abstract: The invention provides a perpendicular recording medium with high recording density, and a magnetic recording and reproducing apparatus, by improving the function of magnetic anisotropy of a soft magnetic underlayer. The perpendicular recording medium has at least a soft magnetic underlayer and a perpendicular magnetic recording layer on a non-magnetic substrate, wherein when Ku? (erg/cm3) is defined as a perpendicular magnetic anisotropic energy, and Ms (emu/cm 3) is defined as a saturation magnetization of the soft magnetic underlayer, Ku? of the soft magnetic underlayer has a negative value and Ku?<?2?Ms2. As a result, the easy axis of a magnetization of a soft magnetic underlayer is oriented strongly in the substrate surface plane, which is effective to suppress the WATE phenomena and spike noise.
    Type: Application
    Filed: March 29, 2006
    Publication date: February 5, 2009
    Applicants: Tohoku University, SHOWA DENKO K.K., Kabushiki Kaisha Toshiba
    Inventors: Migaku Takahashi, Masahiro Oka, Akira Kikitsu