Abstract: According to one embodiment, a magnetic recording medium includes: a data area on which a plurality of first magnetic dots are arranged at predetermined positions to record information; a servo area on which a plurality of second magnetic dots for specifying the positions of said plurality of first magnetic dots are arranged at predetermined positions; and servo frames configured so that a frequency of said servo frames is 2 N per circumference of said medium having a radius, that said servo frames are radially discontinuous, and that said servo frame and a space-area, on which no servo frames exist, are alternately radially arranged at a cycle W.
Abstract: Magnetic media made using planar magnetic heads. A head may comprise a substrate having conductive thru-hole vias extending therethrough, a first magnetic layer deposited and patterned on the substrate, a first insulation layer deposited and patterned on the first magnetic layer, a conductive coil layer deposited and patterned on the first insulation layer and connected to the conductive thru-hole vias, a second insulation layer deposited and patterned on the conductive coil layer, vias patterned into the insulation layer extending to the first magnetic layer, a second magnetic layer deposited in the vias, and a third magnetic layer deposited and patterned on the second insulation layer and second magnetic layer. The third magnetic layer may be connected to the first magnetic layer through the second magnetic layer deposited in the vias of the insulation layers.
Abstract: A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.
Abstract: A method and system for reading readback waveforms representing written magnetization states of a pair of magnetic islands of a two-level patterned magnetic recording medium, and a structure that include a multi-level patterned magnetic medium. Reading the readback waveform representing the written magnetization state includes: identifying the written magnetization state by decoding the readback waveform; and displaying and/or recording the written magnetization state. The magnetic medium of the structure includes distributed pillars. Each pillar includes a first and second magnetic island. Each magnetic island has a magnetic easy axis oriented at a first tilt angle (?1) and a second tilt angle (?2), wherein ?1 and ?2 satisfy: ?1??2, either or both of ?1 and ?2 differing from 0, 90, 180, and 270 degrees, or combinations thereof.
Type:
Application
Filed:
February 16, 2011
Publication date:
June 9, 2011
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Abstract: A recordable magnetic media includes a servo pattern having a plurality of adjacent alternating magnetic and nonmagnetic material stripes. At least some of the magnetic material stripes have magnetic transitions that define encoded data.
Type:
Application
Filed:
September 1, 2009
Publication date:
March 3, 2011
Applicant:
SEAGATE TECHNOLOGY LLC
Inventors:
PUSKAL PRASAD POKHAREL, MUSTAFA CAN OZTURK, BARMESHWAR WIKRAMADITYA, ALEXEI H. SACKS, SUNDEEP CHAUHAN, DAVID SHIAO-MIN KUO
Abstract: A magnetic device having a magnetic feature, the magnetic feature including magnetic portions, a stop layer portion on each magnetic portion, and a region of non-magnetic material adjacent to the magnetic portions and the stop layer portions, where the stop layer portions define planar upper boundaries for the magnetic portions and an endpoint in planarization of the magnetic feature.
Type:
Application
Filed:
August 12, 2009
Publication date:
February 17, 2011
Applicant:
Seagate Technology LLC
Inventors:
Zhaohui Fan, David S. Kuo, Kim Yang Lee
Abstract: A patterned media has a substrate, and a magnetic recording layer on the substrate including protruded magnetic patterns and a nonmagnetic material filled in between the protruded magnetic patterns. In the patterned media, a depth Db and a depth Da, which are defined that Db is a depth from a surface of the magnetic patterns to a surface of the nonmagnetic material filled in a first central part between the magnetic patterns adjacent to each other in a cross-track direction or a down-track direction, and Da is a depth from a surface of the magnetic patterns to a surface of the nonmagnetic material filled in a second central part in a portion surrounded by the magnetic patterns, have a relationship that the depth Da is greater than the depth Db.
Abstract: A method of manufacturing a perpendicular magnetic recording medium is provided which is capable of improving fineness of a particle diameter and vertical orientation of a perpendicular magnetic recording layer, improving corrosion resistance of the magnetic recording medium, and recording and reproducing high-density information.
Abstract: An aspect of the present invention relates to a method of manufacturing a hexagonal ferrite magnetic powder comprising preparing a melt by melting a starting material mixture comprising a hexagonal ferrite-forming component and a glass-forming component; rapidly cooling the melt to obtain an amorphous material comprising 0.3 to 2.0 weight percent of carbon atoms; heating the amorphous material to a temperature range of 580 to 700° C. and maintaining the amorphous material within the temperature range to precipitate hexagonal ferrite magnetic particles; and collecting the hexagonal ferrite magnetic particles precipitated.
Type:
Application
Filed:
March 30, 2010
Publication date:
September 30, 2010
Applicant:
FUJIFILM CORPORATION
Inventors:
Shiho KAMISAWA, Toshio TADA, Nobuo YAMAZAKI
Abstract: A patterned perpendicular magnetic recording disk has a pre-patterned disk substrate with pillars and trenches arranged in data regions and servo regions. In the data regions, the height of the data pillars is equal to or greater than the spacing between the data pillars, while in the servo regions the height of the servo pillars is less than the spacing between the servo pillars. A magnetic recording material with perpendicular magnetic anisotropy is deposited over the entire disk substrate, which results in magnetic material on the tops of the data pillars and servo pillars and in the servo trenches. The material in the data trenches is either nonmagnetic or discontinuous. After the application of a high DC magnetic field in one perpendicular direction and a low DC magnetic field in the opposite direction, the resulting disk has patterned servo sectors with servo pillars all magnetized in the same perpendicular direction and servo trenches magnetized in the opposite perpendicular direction.
Type:
Application
Filed:
March 27, 2009
Publication date:
September 30, 2010
Applicant:
HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
Inventors:
Thomas R Albrecht, Zvonimir Z. Bandic, Olav Hellwig, Gabriel Zeltzer
Abstract: A storage apparatus is provided. A storage apparatus can include a storage device having one or more unique device identifiers disposed in, on, or about the storage apparatus. One or more computer readable and writeable data storage areas can be disposed in, on, or about the storage apparatus. One or more computer readable data storage areas can also be disposed in, on, or about the storage apparatus. One or more computer readable instruction sets can be disposed in, on, or about the storage apparatus. The execution of all or a portion of the one or more computer readable instruction sets can be contingent upon the successful authentication of all or a portion of the one or more device identifiers.
Type:
Application
Filed:
December 18, 2008
Publication date:
June 24, 2010
Applicant:
HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
Inventors:
Craig N. Changstrom, John Main, David H. Hanes
Abstract: A magnetic data storage cell, applicable to spin-torque random access memory (ST-RAM), is disclosed. A magnetic cell includes first and second fixed magnetic layers and a free magnetic layer positioned between the fixed magnetic layers. The magnetic cell also includes terminals configured for providing a spin-polarized current through the magnetic layers. The first fixed magnetic layer has a magnetization direction that is substantially parallel to the easy axis of the free magnetic layer, and the second fixed magnetic layer has a magnetization direction that is substantially orthogonal to the easy axis of the free magnetic layer. The dual fixed magnetic layers provide enhanced spin torque in writing to the free magnetic layer, thereby reducing the required current and reducing the feature size of magnetic data storage cells, and increasing the data storage density of magnetic spin torque data storage.
Abstract: A method of polishing to reduce surface roughness of at least one surface of a glass ceramic substrate that includes an amorphous glass portion and a crystalline portion. The method comprises at least one step of polishing the surface using a polishing pad and an abrasive polishing slurry. The polishing slurry comprises a first concentration of Ceria particulates and a second concentration of Silica particulates. The amorphous glass portion and the crystalline portion of the at least one surface are polished substantially equally.
Abstract: An aspect of the present invention relates to a magnetic recording medium comprising a magnetic layer on a nonmagnetic organic material support, wherein the magnetic layer comprises a magnetic material comprising a hard magnetic material comprising a rare earth element, and on a portion of a surface of the hard magnetic material, a soft magnetic region, and the soft magnetic region is exchange-coupled with the hard magnetic material. Another aspect of the present invention relates to a method of manufacturing a magnetic recording medium comprising forming a hard magnetic layer by coating a coating liquid comprising a hard magnetic material comprising a rare earth element on a nonmagnetic organic material support, and forming, on at least a portion of a surface of the hard magnetic material comprised in the hard magnetic layer, a soft magnetic region, the soft magnetic region being exchange-coupled with the hard magnetic material.
Abstract: A method for manufacturing a magnetic recording medium (30) having magnetically separate magnetic recording patterns on at least one surface of a nonmagnetic substrate (1), includes the steps of forming a magnetic layer (2) on the nonmagnetic substrate, forming a mask layer (3) on the magnetic layer, forming a resist layer (4) on the mask layer, transferring negative patterns of the magnetic recording patterns to the resist layer using a stamp (5), removing portions of the mask layer which correspond to the negative patterns of the magnetic recording patterns, implanting ions in the magnetic layer from a resist layer-side surface to partly demagnetize the magnetic layer, and removing the resist layer and the mask layer.
Abstract: Magnetic media made using planar magnetic heads. A head may comprise a substrate having conductive thru-hole vias extending therethrough, a first magnetic layer deposited and patterned on the substrate, a first insulation layer deposited and patterned on the first magnetic layer, a conductive coil layer deposited and patterned on the first insulation layer and connected to the conductive thru-hole vias, a second insulation layer deposited and patterned on the conductive coil layer, vias patterned into the insulation layer extending to the first magnetic layer, a second magnetic layer deposited in the vias, and a third magnetic layer deposited and patterned on the second insulation layer and second magnetic layer. The third magnetic layer may be connected to the first magnetic layer through the second magnetic layer deposited in the vias of the insulation layers.
Abstract: The present invention relates to a magnetic recording medium comprising a magnetic layer comprising a ferromagnetic powder and a binder on a nomnagnetic support. A product, Mr?, of a residual magnetization Mr of the magnetic layer and a thickness ? of the magnetic layer is equal to or greater than 2 mT•?m and equal to or less than 12 mT•?m, a squareness in a perpendicular direction is equal to or greater than 0.4 and equal to or less than 0.7, and a squareness in a longitudinal direction is equal to or greater than 0.3 but less than 0.6.
Abstract: A perpendicular magnetic recording media is disclosed which employs inexpensive materials in the intermediate layer of the high-recording density media while exhibiting magnetic characteristics comparable or superior to those of media using Ru or Re. A perpendicular magnetic recording apparatus employing this perpendicular magnetic recording media also is disclosed. The perpendicular magnetic recording media has a nonmagnetic substrate, a soft magnetic backing layer formed on the nonmagnetic substrate, a seed layer formed on the soft magnetic backing layer, an intermediate layer formed on the seed layer, a magnetic layer formed on the intermediate layer, and a protective layer formed on the magnetic layer. The intermediate layer comprises an alloy with the hcp structure containing 55 at % or more Zn, the magnetic layer comprises an alloy with the hcp structure containing Co, and the A?50 value of the orientation plane (0002) of the magnetic layer is between 1.5° and 4°.
Type:
Application
Filed:
July 5, 2008
Publication date:
January 15, 2009
Applicant:
FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
Abstract: The invention relates to a read only magnetic information carrier (1b, 1c, 1d) comprising a substrate (2), an information layer (3) and a stabilizing layer (15a, 15b). The information layer (3) comprises a pattern of magnetic bits (4) of magnetic material wherein the pattern of magnetic bits (4) constitutes an array of bit locations. The presence or absence of the magnetic material at a bit location represents a value of the bit location by a magnetic field (5) having a predetermined magnetization direction (6). The stabilizing layer (15a, 15b) is arranged between the substrate (2) and the information layer (3) and comprises hard magnetic material (8, 9) which is magnetically coupled to the magnetic material of the magnetic bit (4). The magnetically coupled hard magnetic material (8, 9) provides the predetermined magnetization direction (6) of the magnetic field (5).