Abstract: Systems and methods for discrete logarithm-based cryptography using the Shafarevich-Tate group are described. In one aspect, a Shafarevich-Tate group is generated from an abelian variety. Data is encrypted or signed or a common secret is established as a function of a secret generated from the Shafarevich-Tate group.
Abstract: A method of correcting gravity-induced error in quantum cryptography system, which is capable of improving accuracy when an optical cable is not installed and photons are transmitted through an artificial satellite, is disclosed. The method performed by an electronic device, comprises receiving a distance (r) to a satellite that receives polarized photon from a sender and transmits the polarized photon to a receiver, receiving an angular momentum per unit mass of the satellite (lobs), and calculating a rotation amount of the polarized photon, which is induced by a warp of space due to gravity by using the distance to the satellite and the angular momentum per unit mass of the satellite (lobs). The rotation 2? of the polarized photon is calculated by the following equation, sin ? ? ? ? ( r ) ? - l obs rr s ? 1 - r s r , wherein ‘rs’ is the Schwarzschild radius of the Earth.
Abstract: There are provided a method for elliptic curve cryptography with countermeasures against simple power analysis and fault injection analysis, and a system thereof. According to an aspect, there is provided a method for elliptic curve cryptography, in which an elliptic curve point operation is performed to generate an elliptic curve code, including: receiving a first point and a second point on the elliptic curve, wherein the first point is P0=(x0, y0) and the second point is P1=(x1, y1); and performing doubling if the first point is the same as the second point, and performing addition if the first point is different from the second point, to thereby obtain a third point, wherein the third point is P2=P0+P1=(x2, y2). Accordingly, it is possible to provide countermeasures against a side channel analysis attack.
Type:
Application
Filed:
February 19, 2013
Publication date:
April 10, 2014
Applicant:
ELECTRONICS & TELECOMMUNICATIONS RESEARCH INSTITUTE
Inventors:
Yong Je CHOI, Doo Ho CHOI, Hyun Sook CHO
Abstract: An authentication method using visual cryptography in a smart terminal, including: receiving, from an authentication server, a key image in which a user's individual cryptography string generated by the authentication server is separated; requesting user authentication from the authentication server; after requesting the user authentication, receiving, from a camera, an encrypted image shown on a display device; extracting an encrypted area from the received encrypted image; converting the extracted encrypted area to match with the key image in size and shape and overlaying the encrypted area with the key image pre-stored in the smart terminal; displaying an authentication code shown in an area where the encrypted area is overlaid with the key image and receiving the authentication code to transmit the authentication code to the authentication server; and after transmitting the authentication code, receiving an authentication result from the authentication server to provide the authentication result to the us
Abstract: An architecture and a method for cryptography acceleration is disclosed that allows significant performance improvements without the use of external memory. Specifically, the chip architecture enables “cell-based” processing of random-length IP packets. The IP packets, which may be of variable and unknown size, are split into fixed size “cells.” The fixed-size cells are then processed and reassembled into packets. The cell-based packet processing architeture of the present invention allows the implementation of a processing pipeline that has known processing throughput and timing characteristics, thus making it possible to fetch and process the cells in a predictable time frame. The architecture is scalable and is also independent of the type of cryptography performed. The cells may be fetched ahead of time (pre-fetched) and the pipeline may be staged in such a manner that attached (local) memory is not required to store packet or control parameters.
Abstract: Technologies for elliptic curve cryptography (ECC) include a computing device having an ECC engine that reads a datapath selector signal that indicates a 256-bit data width or a 384-bit data width. The ECC engine reads one or more parameters having a data width indicated by the datapath selector signal from a data port. The ECC engine reads an opcode from an instruction port that identifies an ECC operation such as an elliptic curve operation or a prime field arithmetic operation. The ECC engine performs the operation with the data width identified by the datapath selector. The ECC engine writes results data having the data width identified by the datapath selector to one or more output ports. The ECC engine may perform the elliptic curve operation with a specified side-channel protection level. The computing device may include a cryptography driver to control the ECC engine. Other embodiments are described and claimed.
Abstract: A cryptography circuit protected against observation attacks comprises at least one register R providing a variable x masked by the mask m, the masked variable being encrypted by a first substitution box S in a cyclic manner. The circuit also comprises a mask register M delivering at each cycle a mask mt, the transformation of m, the mask m being extracted from mt before being encrypted by a second substitution box S?, the new mask m? obtained on output from this box S? is transformed into a mask m?t before being stored in the mask register M. The transformation consists of a bijection or a composition law making it possible to reduce or indeed to cancel any high-order attack in accordance with a model of activity of the registers R and M. Cryptography circuits are protected against high-order observation attacks on installations based on masking.
Abstract: An architecture and a method for a cryptography acceleration is disclosed that allows significant performance improvements without the use of external memory. Specifically, the chip architecture enables “cell-based” processing of random-length IP packets. The IP packets, which may be of variable and unknown size, are split into fixed-size “cells.” The fixed-sized cells are then processed and reassembled into packets. The cell-based packet processing architecture of the present invention allows the implementation of a processing pipeline that has known processing throughput and timing characteristics, thus making it possible to fetch and process the cells in a predictable time frame. The architecture is scalable and is also independent of the type of cryptography performed. The cells may be fetched ahead of time (pre-fetched) and the pipeline may be staged in such a manner that attached (local) memory is not required to store packet data or control parameters.
Abstract: An apparatus for hash cryptography has a hardware structure that is capable of providing both secure hash algorithm (SHA)-1 hash calculation and SHA-256 hash calculation. The apparatus for hash cryptography generates a plurality of first message data corresponding to a plurality of first rounds when the SHA-1 hash calculation is performed and generates a plurality of second message data corresponding to a plurality of second rounds when the SHA-256 hash calculation is performed by using one memory, one first register, one XOR calculator, and one OR calculator, calculates a message digest by the SHA-1 hash calculation by using the plurality of first message data when the SHA-1 hash calculation is performed, and calculates a message digest by the SHA-256 by using the plurality of second message data when the SHA-256 hash calculation is performed.
Type:
Application
Filed:
September 25, 2009
Publication date:
June 10, 2010
Applicant:
Electronics and Telecommunications Research Institute
Inventors:
Moo Seop KIM, Young Soo PARK, Ji Man PARK, Young Sae KIM, Hong Il JU, Sung Ik JUN
Abstract: A quantum cryptography communication system includes a first data communication unit; a second data communication unit connected with the first data communication unit by a first optical fiber; and a third data communication unit connected with the second data communication unit by a second optical fiber. A first shared key is generated in the first data communication unit and the second data communication unit, and a second shared key is generated in the second data communication unit and the third data communication unit. The second data communication unit encrypts the first shared key by using the second shared key and then transmits the encrypted first shared key to the third data communication unit on the second optical fiber, and the third data communication unit decrypts the encrypted first shared key by using the second shared key to reproduce the first shared key.
Abstract: Elliptical curve cryptography (ECC) utilizes an elliptic curve consistent with the formula px mod q=r, where x is a private key having an irrational number component. The irrational component is employed to provide much greater entropy than would be achieved where x is a prime number.
Abstract: A system and method of carrying out a binary arithmetic operation in a cryptographic operation for lattice-based cryptography. The variables used in the binary arithmetic operation may have their bits randomly rotated to counter side channel attacks. An addition and multiplication operation on variables with rotated bits are disclosed.
Type:
Application
Filed:
May 31, 2023
Publication date:
December 5, 2024
Inventors:
Markus Schoenauer, Melissa Azouaoui, Olivier Bronchain, Tobias Schneider
Abstract: Provided are an electronic payment method and an electronic device using identity-based public key cryptography. The electronic payment method includes receiving, from a key management service (KMS) server that stores personal information of a user, a private key of the user generated according to an Identity-based public key cryptography (IDPKC) protocol; encrypting payment information by using a public key of a payment device being generated according to the IDPKC protocol, and encrypting order information by using a public key of a seller device being generated according to the IDPKC protocol; producing, according to the IDPKC protocol, a dual signature of the encrypted payment information and the encrypted order information by using the private key; transmitting a transaction request including the dual-signed payment information and the dual-signed order information to the seller device; and receiving a response to the transaction request from the seller device.
Type:
Application
Filed:
August 22, 2016
Publication date:
May 9, 2019
Applicant:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Parashuram CHAWAN, Paulo SERGIO ALVES MARTINS
Abstract: An Elliptic Curve Cryptography reduction technique uses a prime number having a first section of Most Significant Word “1” states, with N=nm-1+N1B+n0 and a second section with a plurality of “1” or “0” states. The combination of the first section and the second section is a modulus.
Abstract: A cryptography administration system facilitates secure, user-friendly and auditable cryptography. An administrator may create channels with associated cryptographic keys and algorithms for performing cryptographic operations such as encryption and decryption. The channel may be associated with licenses which may include permissions to perform cryptographic operations. The licenses may be shared with one or more users. A user may perform cryptographic operations using the channel according to the permissions and operations included in the licenses, to which the user has access, associated with the channel. The user does not need a technical understanding of the cryptographic system (e.g., keys and algorithms) to perform the cryptographic operations and does not need access to the keys to perform the operations. The cryptographic operations may be stored in an audit log that can be reviewed by user.
Type:
Application
Filed:
October 15, 2021
Publication date:
March 30, 2023
Inventors:
Mihir Patil, Hugo Dobbelaere, Yeong Wei Wee, Maia Hamin, Piotr Kraus, Yurii Mashtalir, Hussein Farah, Alexander Galimberti, Caterina Wanka, Lukas Czypulovski, Juraj Micko, Nezihe Pehlivan
Abstract: A cryptosystem having a secure Cryptographic Virtual Machine (CVM) protected by a Tamper-Proof Virtual Layer (TPVL) for performing cryptography in software is described. The CVM and TPVL allow software applications to store and process cryptographic keys and data in a secure and tamper-proof manner, without requiring the use of a Hardware Security Module (HSM).
Abstract: Embodiments relate to systems, apparatuses, and methods for performing transaction signing utilizing asymmetric cryptography and a private ledger. A transaction data is signed by a user device using a private key, and may be utilized in an authorization request message without including a real credential of the user. A transaction verification and accounting module (TVAM) can verify the signed transaction data and can continue processing the transaction.
Abstract: An architecture and a method for a cryptography acceleration is disclosed that allows significant performance improvements without the use of external memory. Specifically, the chip architecture enables “cell-based” processing of random-length IP packets. The IP packets, which may be of variable and unknown size, are split into fixed-size “cells.” The fixed-sized cells are then processed and reassembled into packets. The cell-based packet processing architecture of the present invention allows the implementation of a processing pipeline that has known processing throughput and timing characteristics, thus making it possible to fetch and process the cells in a predictable time frame. The architecture is scalable and is also independent of the type of cryptography performed. The cells may be fetched ahead of time (pre-fetched) and the pipeline may be staged in such a manner that attached (local) memory is not required to store packet data or control parameters.
Abstract: Technologies for elliptic curve cryptography (ECC) include a computing device having an ECC engine that reads a datapath selector signal that indicates a 256-bit data width or a 384-bit data width. The ECC engine reads one or more parameters having a data width indicated by the datapath selector signal from a data port. The ECC engine reads an opcode from an instruction port that identifies an ECC operation such as an elliptic curve operation or a prime field arithmetic operation. The ECC engine performs the operation with the data width identified by the datapath selector. The ECC engine writes results data having the data width identified by the datapath selector to one or more output ports. The ECC engine may perform the elliptic curve operation with a specified side-channel protection level. The computing device may include a cryptography driver to control the ECC engine. Other embodiments are described and claimed.
Abstract: The present invention concerns a countermeasure method in an electronic component using a public key cryptography algorithm based on the use of elliptic curves. From a private key d and a number of points n on an elliptic curve, a new deciphering integer d′ is calculated. The present invention applies particularly to any existing electronic component, such as a smart card.