Search Patents
  • Patent number: 7854582
    Abstract: A method of emergency operation of an aircraft turbofan engine during an aircraft flight is provided. The engine includes a fan shaft with a fan, and an electric motor/generator mounted for rotation therewith. The method includes shutting down the engine while allowing the engine to windmill, operating the electric motor/generator to rotate the shaft at a determined windmilling speed which is desired for the fan shaft, and operating the engine at the desired windmilling speed for substantially a remainder of the aircraft flight.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: December 21, 2010
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Richard Ullyott
  • Patent number: 6409469
    Abstract: A gas turbine engine rotor assembly such as a fan or compressor includes fan blades spaced axially from stator vanes inside an annular duct. A controlled air blowing system is secured to the annular duct and adapted to blow a hot air flow in a direction opposite to the rotation of the fan blades into the annular duct between the fan blades and the stator vanes, to impart an opposite rotational momentum with respect to the air compressed by the rotor blades, in a asymmetrical pattern to interfere with or destroy a symmetrical pattern of the blade rotation-wake of the compressed air, thereby reducing the strength or preventing the generation of the spinning mode so that the fan-stator interaction tones are significantly reduced.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: June 25, 2002
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Man-Chun Tse
  • Patent number: 10823196
    Abstract: The diffuser pipe assembly for a compressor of a gas turbine engine includes diffuser pipes circumferentially distributed around a central axis and configured for distributing a flow of compressed air from the compressor to the combustor. Each of the diffuser pipes curving between an inlet end and an outlet end. A first subset of the diffuser pipes has a natural vibration frequency different than a natural vibration frequency of at least a second subset of the diffuser pipes. A method of operating a compressor including the diffuser pipe assembly is also disclosed.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: November 3, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Ignatius Theratil, Krishna Prasad Balike, Aldo Abate
  • Patent number: 11441437
    Abstract: A shroud configured to be disposed around an impeller of a centrifugal compressor, the shroud has a wall extending circumferentially around a central axis, the wall having an inner face oriented toward a gaspath and an outer face opposed to the inner face, a bleed slot defined in the wall and extending along at least a portion of a circumference thereof, the bleed slot defining a bleed direction from the inner face and away from the gaspath, the bleed direction at the inner face of the wall being either parallel to the central axis or oriented toward the central axis. A method of manufacturing a shroud is provided.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 13, 2022
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Alexandre Capron, Bernard Chow
  • Publication number: 20130189071
    Abstract: An oil purge system for a mid turbine frame (MTF) of a gas turbine engine has an oil transfer tube surrounded by a heat shield tube. The oil transfer and heat shield tubes extend at their respective inner ends downwardly from an oil port of a bearing housing and terminate at their respective outer ends projecting outwardly from an annular wall of an outer case of the MTF. Oil leaked from the oil port is purged by pressurized air through an annular cavity formed between the oil transfer and heat shield tubes, and is discharged out of the MTF.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 25, 2013
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: Eric Durocher, John Pietrobon, Zenon Szlanta
  • Patent number: 10961919
    Abstract: Herein provided are methods and systems for controlling an engine having a variable geometry mechanism. A pressure ratio between a first pressure at an inlet of the engine and a predetermined reference pressure is determined. An output power for the engine is determined. The output power is adjusted based at least in part on the pressure ratio to obtain a corrected output power. A position control signal for a variable geometry mechanism of the engine is generated based on the corrected output power and the pressure ratio. The position control signal is output to a controller of the engine to control the variable geometry mechanism.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 30, 2021
    Assignee: PRATT & WHITNEY CANADA CORP
    Inventors: Philippe Beauchesne-Martel, Poi Loon Tang, Andrew Thompson, Ghislain Plante
  • Publication number: 20140079530
    Abstract: A system for cooling a generator mounted in the tail-cone of an engine. The system comprises a fairing, which receives through an inlet thereof air from a bypass duct and directs the bypass air towards a cavity of the tail-cone for cooling the generator. The bypass air is then expelled through an outlet of a support strut positioned in fluid communication with the tail-cone cavity. The fairing inlet and the strut outlet are both positioned in a plane substantially perpendicular to a longitudinal plane of the engine. In this manner, circulation of the bypass air through the fairing, the tail-cone cavity, and the strut may be achieved. The bypass air directed through the fairing further enables cooling of service lines accommodated in the fairing. A lobe mixer is further used to direct the fairing and shield the latter from core exhaust.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: Gordon FERCH, Daniel ALECU, Xiaoliu LIU, Barry BARNETT, Dileepan SIVALINGAM, Carmine FORGIONE
  • Publication number: 20140255147
    Abstract: A method of immobilizing a low pressure spool assembly including maintaining a body of the locking tool in the annular gas path, attaching a securing portion of the body across an aperture defined through an annular wall delimiting the gas path; positioning a stop connected to the body of the locking tool into a rotary path of a given one of the sets of blades of the low pressure spool assembly; and rotating the high pressure spool assembly thereby biasing a blade of the given set of blades of the low pressure spool assembly against the stop, thereby immobilizing the low pressure spool assembly. A locking tool and a method of performing engine maintenance are also provided.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: Richard ROOT, Hugo BINETTE
  • Patent number: 6183195
    Abstract: A structure and a method to form the structure are provided for an impeller bleed passage of a compressor for a gas turbine engine. The compressor has an impeller assembly which includes an impeller rotor rotatably supported within an annular shroud having an inlet and an outlet. The shroud is made of two separate annular segments which are axially spaced apart. Each of the segments is supported separately and independently in a cantilevered manner. Such that a circumferentially continuous, uninterrupted annular slot is formed between the two segments and air passes through the slot without causing a dynamic component to affect the impeller rotor. The width of the slot is adjustable for different engines depending on the requirements of use of a particular engine. The width of the slot is also self-regulating in response to changes in the air pressure within the shroud because of the deformation of the segments. The structure is relatively simple and inexpensive to manufacture.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: February 6, 2001
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Eric Tremaine
  • Patent number: 9004850
    Abstract: A compressor for a gas turbine engine with variable inlet guide vanes each defining an airfoil portion twisted such that at each location of the airfoil portion along the pivot axis, an angle is defined between a respective chord extending between the leading and trailing edges and a same reference plane containing the pivot axis and extending radially with respect to the compressor. The angle, which is measured along a direction of rotation of the rotor, varies from a minimum value near the hub side wall to a maximum value near the shroud side wall. A method of reducing vortex whistle in a radial inlet of a compressor is also provided.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 14, 2015
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Jason Nichols, Hien Duong, Peter Townsend
  • Patent number: 9709070
    Abstract: A fan for a turbofan gas turbine engine having a low hub-to-tip ratio is disclosed. The fan includes a rotor hub and a plurality of radially extending fan blades. Each fan blade defines a hub radius (RHUB), which is the radius of the leading edge at the hub relative to a centerline of the fan, and a tip radius (RTIP), which is the radius of the leading edge at a tip of the fan blade relative to the centerline of the fan. The ratio of the hub radius to the tip radius (RHUB/RTIP) is less than 0.29. In a particular embodiment, this ratio is between 0.25 and 0.29. In another particular embodiment, this ratio is less than 0.25.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: July 18, 2017
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Karl Heikurinen, Peter Townsend
  • Publication number: 20140069105
    Abstract: Methods and devices for anticipating a surge in a gas turbine engine. Controlled pressure signal(s) may be compared with reference pressure signal(s), each of the controlled pressure signal(s) and reference pressure signal(s) having an associated time value. If the controlled pressure signal(s) are less than the reference pressure signal(s), a controlled pressure curve may be fitted through a predetermined number of points based on the controlled pressure value(s) and associated time value(s). A reference pressure curve may be fitted through the predetermined number of points based on the reference pressure value(s) and associated time value(s). A time to compressor surge may be estimated based on an intersection of the controlled pressure curve and the reference pressure curve.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventor: Tuyen Trong HOANG
  • Patent number: 6439840
    Abstract: A gas turbine engine fan assembly includes fan blades spaced axially from stator vanes inside an annular bypass duct. A plurality of perforated baffle plates are installed in the annular bypass duct downstream of the stator vanes. The perforated baffle plates extend in a generally axial direction and are unevenly, circumferentially spaced apart from one another to divide a major section of the annular bypass duct into a plurality of axial flow-path segments in an asymmetrical pattern to disrupt continuity, destroy a symmetrical pattern and absorb sound energy of a spinning mode of sound pressures imbedded in the air flow downstream of the stator vanes, without substantially affecting a thrust provided by the air flow when discharged from the bypass duct.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: August 27, 2002
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Man-Chun Tse
  • Patent number: 10900414
    Abstract: There is disclosed a fan assembly including a fan rotor including a hub and fan blades. The fan blades have a leading edge and a trailing edge. A fan stator downstream of the fan rotor relative to a direction of an airflow through the fan assembly. The fan stator includes vanes extending between radially inner ends and radially outer ends. A flow recirculation circuit has an inlet downstream of radially inner ends of the vanes of the fan stator and an outlet upstream of radially inner ends of the vanes. A recirculation stator has a plurality of stationary guide vanes circumferentially distributed around the axis and located in the flow recirculation circuit between the inlet and the outlet A method of operating the fan assembly is also disclosed.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: January 26, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Hien Duong, Karan Anand, Vijay Kandasamy, Rakesh Munlyappa
  • Publication number: 20140260324
    Abstract: A rotor for a gas turbine engine includes a plurality of radially extending blades, each having a remote blade tip defining an outer tip surface, and a leading edge defined between opposed pressure and suction side airfoil surfaces. A shroud circumferentially surrounds the rotor, and a radial distance between an inner surface of the shroud and the outer tip surface of the blades defines a radial tip clearance gap therebetween. The tip of each of the blades has a pressure side edge formed at the intersection between the outer tip surface and the pressure side airfoil surface, and a suction side edge formed at the intersection between the outer tip surface and the pressure side airfoil surface. The suction side edge has a larger radius of curvature than the pressure side edge, thereby reducing the amount of tip leakage flow through the radial tip clearance gap.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: Hien Duong, Jason Nichols, Vijay Kandasamy
  • Publication number: 20140271108
    Abstract: A compressor for a gas turbine engine having a bleed air recirculation system includes a plurality of bleed holes extending through the shroud at a first axial location thereon substantially adjacent the blade tips. The bleed holes have a closed outer perimeter along their complete length. An annular bleed cavity surrounds the shroud and is in communication with outlet openings of the bleed holes. The bleed holes provide communication between said main gas flow passage and the bleed cavity. The bleed cavity includes exit passages having outlets disposed in said shroud at a second axial location which is upstream of both the first axial location and the leading edge of the blades of the rotor. Bleed air is passively bled from the main gas flow passage via the bleed holes, recirculated through the bleed cavity and re-injected back into the main gas flow passage at the second axial location.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventors: Hien Duong, Jason Nicholas, Peter Townsend, Vijay Kandasamy
  • Patent number: 6619908
    Abstract: A method and apparatus carrying the method for sealing a radial gap between coaxial inner and outer rotating shafts of a gas turbine engine includes using a radial seal as a main seal to seal the gap for a normal engine operation condition, and using an axial seal as a back-up seal for a double seal of the gap. The radial seal provides a seal which meets relatively restrictive leakage requirements for the normal engine operation condition and the axial seal provides a back-up seal which meets less restrictive leakage requirements but is much more tolerant of radial displacement and vibration between the coaxial inner and outer rotating shafts. Thus, an engine operable condition is ensured under abnormal conditions, such as bird strikes, in which the coaxial relationship between the inner and outer rotating shafts are affected by unbalancing forces caused by the bird strike, thereby causing a failure of the radial seal.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: September 16, 2003
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Vittorio Bruno, Andreas Eleftheriou