Search Patents
  • Patent number: 9272595
    Abstract: A method of controlling a compressor for an air suspension of an electric vehicle includes: determining a state of a reservoir in the electric vehicle, the reservoir coupled to drive air springs of a suspension system; determining whether the electric vehicle is connected to an external source of electric energy for charging an energy storage of the electric vehicle; in response to determining that the electric vehicle is connected to the external source, applying a first value as a threshold for whether to replenish the reservoir by a compressor; and in response to determining that the electric vehicle is not connected to the external source, applying a second value, different from the first value, as the threshold for whether to replenish the reservoir by the compressor.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: March 1, 2016
    Assignee: Tesla Motors, Inc.
    Inventors: Bradley W. Hayes, Daniel Joseph Marioni
  • Publication number: 20120040210
    Abstract: A power source comprised of a metal-air battery pack and a non-metal-air battery pack is provided, wherein thermal energy from the metal-air battery pack is used to heat the non-metal-air battery pack. In one aspect, a thermal energy transfer system is provided that controls the flow of thermal energy from the metal-air battery pack to the non-metal-air battery pack. In another aspect, the flow of thermal energy from the metal-air battery pack to the non-metal-air battery pack is controlled and used to heat the non-metal-air battery pack prior to charging the non-metal-air battery pack.
    Type: Application
    Filed: November 20, 2010
    Publication date: February 16, 2012
    Applicant: TESLA MOTORS, INC.
    Inventor: Weston Arthur Hermann
  • Patent number: 9997389
    Abstract: In one embodiment, there is provided a carrier comprising a top semiconductor layer having isolated positive electrode regions and isolated negative electrode regions separated by a frontside trench through the top semiconductor layer extending at least to an underlying insulating layer positioned between the top semiconductor layer and a bottom semiconductor layer. A dielectric layer covers the top exposed surfaces of the carrier. Backside trenches through the bottom semiconductor layer extending at least to the insulating layer form isolated backside regions corresponding to the frontside positive and negative electrode regions. Backside contacts positioned on the bottom semiconductor layer and coupled to the positive and negative electrode regions allow for the electric charging of the frontside electrode regions.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: June 12, 2018
    Assignee: Tesla, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Publication number: 20120041627
    Abstract: A method of optimizing the operation of the power source of an electric vehicle is provided, where the power source is comprised of a first battery pack (e.g., a non-metal-air battery pack) and a second battery pack (e.g., a metal-air battery pack). The power source is optimized to minimize use of the least efficient battery pack (e.g., the second battery pack) while ensuring that the electric vehicle has sufficient power to traverse the expected travel distance before the next battery charging cycle. Further optimization is achieved by setting at least one maximum speed limit based on vehicle efficiency and the state-of-charge (SOC) of the first and second battery packs.
    Type: Application
    Filed: December 10, 2010
    Publication date: February 16, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Kurt Russell Kelty, Vineet Haresh Mehta, Jeffrey Brian Straubel
  • Publication number: 20120019194
    Abstract: A charging method using an alternating current (AC) line voltage for conductive charging of an energy storage system (ESS) coupled to a polyphase motor drive circuit communicated to a polyphase motor, the polyphase motor drive circuit including a plurality M of driver stages, one driver stage for each phase of the polyphase motor with each driver stage coupled across the energy storage system, the method including the steps of: (a) coupling a first connector providing the line voltage to a second connector coupled to the plurality of driver stages; (b) interrupting selectably the line voltage from communication with the plurality of driver stages; (c) measuring both an ESS common mode voltage of the energy storage system with respect to a voltage reference and a line common mode voltage of the line voltage with respect to the voltage reference while the line voltage communication to the plurality of driver stages is interrupted; (d) operating a particular one of the driver stages to power a common mode voltag
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: Tesla Motors Inc.
    Inventors: Jean-Pierre Krauer, Nick Kalayjian
  • Publication number: 20230347769
    Abstract: It is estimated that by 2030 there will be 145 million EV's in the world, and by 2050 there will be 2.21 Billion Electric Vehicles. These vehicles will require both at home and roadside charging stations for various EV cars and trucks totaling 1.2 million locations just in the State of California alone. The greatest demand will be along remote freeway locations between Las Vegas and Los Angeles such as the Interstate 5 Fwy and the Interstate 15 Fwy. Next year the following car manufacturers are rolling out EV's to meet the surge in demand: Hyundai, Porche, Audi, Nissan, Mazda, Honda, BMW, KIA, Volkswagon, Ford, and Chevy. The present invention describes a system powered by hydrogen gas that can meet this high demand without running power lines everywhere to support roadside and remote charging. The system comprises a hydrogen electrolyzer powered by hydrogen made and stored on site and on demand, to create the needed hydrogen from water at each site to meet the required energy needs.
    Type: Application
    Filed: November 30, 2022
    Publication date: November 2, 2023
    Inventor: Ken Bailey
  • Patent number: 8449997
    Abstract: A power source comprised of a metal-air battery pack and a non-metal-air battery pack is provided, wherein thermal energy from the metal-air battery pack is used to heat the non-metal-air battery pack. In one aspect, a thermal energy transfer system is provided that controls the flow of thermal energy from the metal-air battery pack to the non-metal-air battery pack. In another aspect, the flow of thermal energy from the metal-air battery pack to the non-metal-air battery pack is controlled and used to heat the non-metal-air battery pack prior to charging the non-metal-air battery pack.
    Type: Grant
    Filed: November 20, 2010
    Date of Patent: May 28, 2013
    Assignee: Tesla Motors, Inc.
    Inventor: Weston Arthur Hermann
  • Publication number: 20120041626
    Abstract: A method of optimizing the operation of the power source of an electric vehicle is provided, where the power source is comprised of a first battery pack (e.g., a non-metal-air battery pack) and a second battery pack (e.g., a metal-air battery pack). The power source is optimized to minimize use of the least efficient battery pack (e.g., the second battery pack) while ensuring that the electric vehicle has sufficient power to traverse the expected travel distance before the next battery charging cycle. Further optimization is achieved by setting at least one acceleration limit based on vehicle efficiency and the state-of-charge (SOC) of the first and second battery packs.
    Type: Application
    Filed: December 10, 2010
    Publication date: February 16, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Kurt Russell Kelty, Vineet Haresh Mehta, Jeffrey Brian Straubel
  • Patent number: 8346419
    Abstract: One embodiment includes a method that includes monitoring a battery state of charge circuit that is coupled to a vehicle battery, calculating an averaged value of the state of charge over a time period, charging the vehicle battery by powering a generator with a fuel burning engine that powered on and powered off according to one of a first operational mode and a second operational mode, wherein in the first operational mode the engine is powered on when the battery state of charge drops below a first state of charge and continues until the averaged value of the state of charge increases to a first preprogrammed value.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 1, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Jeffrey Brian Straubel
  • Publication number: 20120098501
    Abstract: An apparatus and method for improving use efficiencies of lead-acid batteries, and more particularly to 12V external lead-acid batteries used in vehicles of all types, load-leveling installations, and backup power applications. A method includes the steps of: a) determining a state of charge (SOC) for a lead-acid battery; b) comparing the SOC against a predetermined charge zone, the charge zone having an upper bound no more than about 90% maximum charge and more preferably no more than about 85% maximum charge and the charge zone having a lower bound no less than about 70% maximum charge and more preferably no less than about 75% maximum charge; and c) maintaining a charge of the lead-acid battery wherein the SOC is within the charge zone.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 26, 2012
    Applicant: Tesla Motors, Inc.
    Inventor: Anil Paryani
  • Publication number: 20130074411
    Abstract: A fuel delivery system and method of use are provided that may be used to open the door covering the charge port of an electric vehicle, or the door covering the fuel filler port of a conventional vehicle. The system includes a fuel coupler (e.g., a charging connector or a gas nozzle) designed to transfer fuel from the source to the vehicle via the vehicle's fuel port. The fuel coupler includes a switch that when toggled, causes a control signal to be wirelessly transmitted over a short distance. Upon receipt of the control signal by a receiver integrated into a vehicle that is in close proximity to the fuel port, an unlatching actuator within the vehicle unlatches the port door, thereby allowing it to open and provide port access.
    Type: Application
    Filed: June 6, 2012
    Publication date: March 28, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Joshua Willard Ferguson, Daryl Zalan, Andrew Dai, Troy Adam Nergaard, Nicholas Robert Kalayjian, Scott Ira Kohn
  • Patent number: 7940028
    Abstract: A power source comprised of a metal-air battery pack and a non-metal-air battery pack is provided, wherein thermal energy from the metal-air battery pack is used to heat the non-metal-air battery pack. In one aspect, a thermal energy transfer system is provided that controls the flow of thermal energy from the metal-air battery pack to the non-metal-air battery pack. In another aspect, the flow of thermal energy from the metal-air battery pack to the non-metal-air battery pack is controlled and used to heat the non-metal-air battery pack prior to charging the non-metal-air battery pack.
    Type: Grant
    Filed: November 20, 2010
    Date of Patent: May 10, 2011
    Assignee: Tesla Motors, Inc.
    Inventor: Weston Arthur Hermann
  • Patent number: 11190031
    Abstract: A battery pack for an energy generation system includes a cell array of conductively interconnected power cells configured to store and discharge energy, a direct current (DC)-to-DC converter coupled to the cell array and configured to receive power from the cell array during discharging of the cell array or to output power to the cell array during charging of the cell array, a pair of output terminals coupled to the DC-to-DC converter for coupling with an external device; and an are fault detection system coupled between the DC-to-DC converter and the pair of output terminals. The are fault detection system includes a first sensor for measuring power transmitted between the DC-to-DC converter and the pair of output terminals and a controller coupled to the first sensor and configured to disable the battery pack based on a measurement of the power transmitted between the DC-to-DC converter and the output terminals.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: November 30, 2021
    Assignee: Tesla, Inc.
    Inventor: Sandeep Narla
  • Patent number: 8627860
    Abstract: A fuel delivery system and method of use are provided that may be used to open the door covering the charge port of an electric vehicle, or the door covering the fuel filler port of a conventional vehicle. The system includes a fuel coupler (e.g., a charging connector or a gas nozzle) designed to transfer fuel from the source to the vehicle via the vehicle's fuel port. The fuel coupler includes a switch that when toggled, causes a control signal to be wirelessly transmitted over a short distance. Upon receipt of the control signal by a receiver integrated into a vehicle that is in close proximity to the fuel port, an unlatching actuator within the vehicle unlatches the port door, thereby allowing it to open and provide port access.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: January 14, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Joshua Willard Ferguson, Daryl Zalan, Andrew Dai, Troy Adam Nergaard, Nicholas Robert Kalayjian, Scott Ira Kohn
  • Patent number: 8190320
    Abstract: A method of optimizing the operation of the power source of an electric vehicle is provided, where the power source is comprised of a first battery pack (e.g., a non-metal-air battery pack) and a second battery pack (e.g., a metal-air battery pack). The power source is optimized to minimize use of the least efficient battery pack (e.g., the second battery pack) while ensuring that the electric vehicle has sufficient power to traverse the expected travel distance before the next battery charging cycle. Further optimization is achieved by setting at least one maximum speed limit based on vehicle efficiency and the state-of-charge (SOC) of the first and second battery packs.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: May 29, 2012
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Vineet Haresh Mehta, Jeffrey Brian Straubel
  • Patent number: 8180512
    Abstract: A method of optimizing the operation of the power source of an electric vehicle is provided, where the power source is comprised of a first battery pack (e.g., a non-metal-air battery pack) and a second battery pack (e.g., a metal-air battery pack). The power source is optimized to minimize use of the least efficient battery pack (e.g., the second battery pack) while ensuring that the electric vehicle has sufficient power to traverse the expected travel distance before the next battery charging cycle. Further optimization is achieved by setting at least one acceleration limit based on vehicle efficiency and the state-of-charge (SOC) of the first and second battery packs.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: May 15, 2012
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Vineet Haresh Mehta, Jeffrey Brian Straubel
  • Publication number: 20130074985
    Abstract: A port door unlatching system is provided that may be used to open the door covering the charge port of an electric vehicle, or the door covering the fuel filler port of a conventional vehicle. The system includes a fuel delivery subsystem with a fuel coupler (e.g., a charging connector or a gas nozzle) designed to transfer fuel from the source to the vehicle via the vehicle's fuel port. The fuel coupler includes a switch that when toggled, causes a control signal to be wirelessly transmitted over a short distance. Upon receipt of the control signal by a receiver integrated into a vehicle that is in close proximity to the fuel port, an unlatching actuator within the vehicle unlatches the port door, thereby allowing it to open and provide port access.
    Type: Application
    Filed: June 6, 2012
    Publication date: March 28, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Joshua Willard Ferguson, Daryl Zalan, Andrew Dai, Troy Adam Nergaard, Nicholas Robert Kalayjian, Scott Ira Kohn
  • Patent number: 10601234
    Abstract: A battery pack for an energy generation system includes a cell array of conductively interconnected power cells configured to store and discharge energy, a direct current (DC)-to-DC converter coupled to the cell array and configured to receive power from the cell array during discharging of the cell array or to output power to the cell array during charging of the cell array, a pair of output terminals coupled to the DC-to-DC converter for coupling with an external device; and an arc fault detection system coupled between the DC-to-DC converter and the pair of output terminals. The arc fault detection system includes a first sensor for measuring power transmitted between the DC-to-DC converter and the pair of output terminals and a controller coupled to the first sensor and configured to disable the battery pack based on a measurement of the power transmitted between the DC-to-DC converter and the output terminals.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: March 24, 2020
    Assignee: Tesla, Inc.
    Inventor: Sandeep Narla
  • Patent number: 8539990
    Abstract: A port door unlatching system is provided that may be used to open the door covering the charge port of an electric vehicle, or the door covering the fuel filler port of a conventional vehicle. The system includes a fuel delivery subsystem with a fuel coupler (e.g., a charging connector or a gas nozzle) designed to transfer fuel from the source to the vehicle via the vehicle's fuel port. The fuel coupler includes a switch that when toggled, causes a control signal to be wirelessly transmitted over a short distance. Upon receipt of the control signal by a receiver integrated into a vehicle that is in close proximity to the fuel port, an unlatching actuator within the vehicle unlatches the port door, thereby allowing it to open and provide port access.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: September 24, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Joshua Willard Ferguson, Daryl Zalan, Andrew Dai, Troy Adam Nergaard, Nicholas Robert Kalayjian, Scott Ira Kohn
  • Publication number: 20170372837
    Abstract: Provided are an attractor for PMA wireless charging type wireless power reception module and a manufacturing method thereof, and a wireless power reception module having the same. The attractor for PMA wireless charging type wireless power reception module according to an embodiment of the present invention comprises: a wireless power reception module; and a thin magnetic piece formed of a magnetic material having a saturation magnetic flux density of 0.5 tesla or more such that a change in the voltage value of a hall sensor of a certain value or more can be detected in both an aligned state when a wireless power transmission module is aligned and a non-aligned state when the wireless power reception module is not in line with the wireless power transmission module within a non-alignment region having a certain area including the aligned state.
    Type: Application
    Filed: November 23, 2015
    Publication date: December 28, 2017
    Applicant: AMOSENSE CO., LTD.
    Inventors: Chun Gul LEE, Kil Jae JANG, Dong Hoon LEE, Min Sik JANG, Ki Chul KIM, Jong Ho PARK
Narrow Results

Filter by US Classification