Search Patents
  • Patent number: 11556136
    Abstract: Systems and methods for flexible conveyance in an assembly-line or manufacturing process are disclosed. A fleet of self-driving vehicles and a fleet-management system can be used to convey workpieces through a sequence of workstations at which operations are performed in order to produce a finished assembly. An assembly can be transported to a first workstation using a self-driving vehicle, where an operation is performed on the assembly. Subsequently, the assembly can be transported to a second workstation using the self-driving vehicle. The operation can be performed on the assembly while it is being conveyed by the self-driving vehicle.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: January 17, 2023
    Assignee: Clearpath Robotics Inc.
    Inventors: Ryan Christopher Gariepy, Andrew Dobson, Nir Rikovitch, William John Alexander Torrens, Roydyn Clayton
  • Patent number: 11842315
    Abstract: Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: December 12, 2023
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Simon Drexler, Roydyn Clayton, Sam Adrian Jenkins, Pavel Bovbel, Yvan Geoffrey Rodrigues
  • Patent number: 11132898
    Abstract: Systems and methods for self-driving vehicle traffic management are disclosed. The system comprises one or more self-driving vehicles. One or more vehicles has a sensor system, a control system, and a drive system. The control system is configured to determine a current position and an intent position associated with itself, and to receive a current position and intent decision associated with a neighbor vehicle. The control system then determines a current spacing and relative spacing between itself and the neighbor vehicle. Based on the current and intent positions, the current spacing, and the relative spacing, the control system determines that the vehicle should yield to the neighbor vehicle, and sends a yield signal to the drive system in order to cause the vehicle to yield to the neighbor vehicle.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 28, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Smriti Chopra, Ryan Christopher Gariepy
  • Patent number: 11945443
    Abstract: Methods and systems are provided for traction detection and control of a self-driving vehicle. The self-driving vehicle has drive motors that drive drive-wheels according to a drive-motor speed. Traction detection and control can be obtained by measuring the vehicle speed with a sensor such as a LiDAR or video camera, and measuring the wheel speed of the drive wheels with a sensor such as a rotary encoder. The difference between the measured vehicle speed and the measured wheel speeds can be used to determine if a loss of traction has occurred in any of the wheels. If a loss of traction is detected, then a recovery strategy can be selected from a list of recovery strategies in order to reduce the effects of the loss of traction.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 2, 2024
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Shahab Kaynama
  • Patent number: 11960300
    Abstract: There is provided a driver-support system for use with a human-operated material-transport vehicle, and methods for using the same. The system has at least one sensor, a human-vehicle interface, and a transceiver for communicating with a fleet-management system. The system also has a processor that is configured to provide a mapping application and a localization application based on information received from the sensor. The mapping application and localization application may be provided in a single localization-and-mapping (“SLAM”) application, which may obtain input from the sensor, for example, when the sensor is an optical sensor such as a LiDAR or video camera.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 16, 2024
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Simon Drexler, Roydyn Clayton, Shahab Kaynama
  • Patent number: 10682948
    Abstract: An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: June 16, 2020
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Simon Drexler, Matthew Allen Rendall, Ryan Christopher Gariepy, Mike Hanuschik, Paul Mohr
  • Patent number: 11142118
    Abstract: An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: October 12, 2021
    Assignee: Clearpath Robotics Inc.
    Inventors: Simon Drexler, Matthew Allen Rendall, Ryan Christopher Gariepy, Mike Hanuschik, Paul Mohr
  • Patent number: 11802933
    Abstract: Systems and methods for WiFi mapping an industrial facility are disclosed. The system comprises a self-driving vehicle having a WiFi transceiver. The self-driving vehicle communicates with a fleet-management using the WiFi transceiver, via a WiFi access point. The self-driving vehicle receives a mission from the fleet-management system, and moves to a destination location based on the mission, using autonomous navigation. While executing the mission, the self-driving vehicle simultaneously measures the received signal strength indication of the WiFi access point and other WiFi access points in the facility, and stores the received signal strength indication in association with the location at which the received signal strength indication was measured.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: October 31, 2023
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Anthony William Tod, Ryan Christopher Gariepy, Ivor Wanders, Andrew Clifford Blakey
  • Patent number: 10814891
    Abstract: Systems and methods for obstacle avoidance with a self-driving vehicle are provided. The system comprises a processor connected to the self-driving vehicle and a sensor in communication with the processor. The sensor is configured to detect objects. The processor is configured to receive a measurement of the self-driving vehicle's speed, and define a sensor region based on the speed. The processor can determine that an object detected by the sensor is within the sensor region, and then initiate a fail-safe routine. The sensor region may be defined based on a range parameter. The sensor region may be defined based on the stopping distance of the vehicle. The sensor region may be redefined when the vehicle's speed changes.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: October 27, 2020
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Alex Bencz, Yan Ma, Michael Irvine, Shahab Kaynama, James Servos, Peiyi Chen
  • Patent number: 9606544
    Abstract: A system for controlling a fleet of unmanned vehicles includes a plurality of unmanned vehicles connected to a computing device. The computing device stores a dynamic attribute and a static attribute respective to each of the plurality of unmanned vehicles. The computing device is configured to: receive a task request including (i) an item identifier of an item, (ii) an action type defining an action to be performed respective to the item, and (iii) a location identifier of a location at which to perform the action; responsive to receiving the request, retrieve the stored dynamic attributes and static attributes; based on a comparison of the task request with the dynamic attributes and the static attributes, select one of the plurality of unmanned vehicles; and transmit, via the network, a command to the selected unmanned vehicle to perform the action respective to the item at the location.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: March 28, 2017
    Assignee: Clearpath Robotics, Inc.
    Inventors: Ryan Christopher Gariepy, Alex Bencz
  • Publication number: 20110288695
    Abstract: An unmanned vehicle system containing one or more vehicles equipped with an autonomous control system. Each vehicle is of navigating on its own when provided with goals. A user is capable of sending and receiving goals from the autonomous control system via a communication link. A unified display interface displays information about the system and accepts commands from the user. The display interface in question is modeless and has a minimum of clutter and distractions. The form of this display interface is that of a set of screens, each of which is able to receive touch inputs from the user. The user is able to monitor and control individual vehicles or the entirety of the UVS solely through their use of a standard touchscreen with no additional peripherals.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 24, 2011
    Applicant: CLEARPATH ROBOTICS, INC.
    Inventors: Ryan GARIEPY, Michael James PURVIS
  • Patent number: 11200760
    Abstract: Systems and methods for measuring a fleet of self-driving vehicles are disclosed. The system comprises one or more self-driving vehicles, non-transitory computer-readable media in communication with the vehicles, a fleet-management system in communication with the media and vehicles, and a server in communication with the media. The fleet-management system is configured to store vehicle status records comprising a vehicle status pertaining to each of the one or more vehicles, and a timestamp in a vehicle status log on the media. The server has a processor that is configured to generate a fleet-performance report based on the vehicle status log.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: December 14, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: David Andrew Brown, Anthony William Tod, Guillaume Autran, Roydyn Clayton, Ryan Christopher Gariepy
  • Publication number: 20150323699
    Abstract: A system, apparatus and method for automatic environmental data collection and analysis are provided, including a server comprising: a processor and a communication interface, the processor configured to: receive, using the communication interface, a geographic survey request from a first computing device; translate the geographic survey request into mission data for collecting geographic survey data; transmit, using the communication interface, the mission data to a second computing device associated with a geographic survey entity; receive, using the communication interface, the geographic survey data collected by the geographic survey entity using the mission data; analyze the geographic survey data to generate processed geographic survey data; and, transmit, using the communication interface, the processed geographic survey data to the first computing device.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 12, 2015
    Applicant: CLEARPATH ROBOTICS, INC.
    Inventors: Ryan Christopher GARIEPY, Matthew Allen RENDALL, Andrew Clifford BLAKEY
  • Publication number: 20200084164
    Abstract: A system, apparatus and method for automatic environmental data collection and analysis are provided, including a server comprising: a processor and a communication interface, the processor configured to: receive, using the communication interface, a geographic survey request from a first computing device; translate the geographic survey request into mission data for collecting geographic survey data; transmit, using the communication interface, the mission data to a second computing device associated with a geographic survey entity; receive, using the communication interface, the geographic survey data collected by the geographic survey entity using the mission data; analyze the geographic survey data to generate processed geographic survey data; and, transmit, using the communication interface, the processed geographic survey data to the first computing device.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 12, 2020
    Applicant: Clearpath Robotics Inc.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Andrew Clifford Blakey
  • Patent number: 11648953
    Abstract: Systems and methods for monitoring a fleet of self-driving vehicles are disclosed. The system comprises one or more self-driving vehicles having at least one sensor for collecting current state information, a fleet-management system, and computer-readable media for storing reference data. The method comprises autonomously navigating a self-driving vehicle in an environment, collecting current state information using the vehicle's sensor, comparing the current state information with the reference data, identifying outlier data in the current state information, and generating an alert based on the outlier data. A notification based on the alert may be sent to one or more monitoring devices according to the type and severity of the outlier.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: May 16, 2023
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Anthony William Tod, David Andrew Brown, Guillaume Autran, Ryan Christopher Gariepy, Bryan Webb, Matthew Allen Rendall
  • Patent number: 10585440
    Abstract: There is provided a driver-support system for use with a human-operated material-transport vehicle, and methods for using the same. The system has at least one sensor, a human-vehicle interface, and a transceiver for communicating with a fleet-management system. The system also has a processor that is configured to provide a mapping application and a localization application based on information received from the sensor. The mapping application and localization application may be provided in a single localization-and-mapping (“SLAM”) application, which may obtain input from the sensor, for example, when the sensor is an optical sensor such as a LiDAR or video camera.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: March 10, 2020
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Simon Drexler, Roydyn Clayton, Shahab Kaynama
  • Patent number: 11460863
    Abstract: A system for controlling a fleet of unmanned vehicles includes a plurality of unmanned vehicles connected to a computing device. The computing device stores a dynamic attribute and a static attribute respective to each of the plurality of unmanned vehicles. The computing device is configured to: receive a task request including (i) an item identifier of an item, (ii) an action type defining an action to be performed respective to the item, and (iii) a location identifier of a location at which to perform the action; responsive to receiving the request, retrieve the stored dynamic attributes and static attributes; based on a comparison of the task request with the dynamic attributes and the static attributes, select one of the plurality of unmanned vehicles; and transmit, via the network, a command to the selected unmanned vehicle to perform the action respective to the item at the location.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: October 4, 2022
    Assignee: Clearpath Robotics Inc.
    Inventors: Ryan Christopher Gariepy, Alex Bencz
  • Patent number: 11054840
    Abstract: There is provided a driver-support system for use with a human-operated material-transport vehicle, and methods for using the same. The system has at least one sensor, a human-vehicle interface, and a transceiver for communicating with a fleet-management system. The system also has a processor that is configured to provide a mapping application and a localization application based on information received from the sensor. The mapping application and localization application may be provided in a single localization-and-mapping (“SLAM”) application, which may obtain input from the sensor, for example, when the sensor is an optical sensor such as a LiDAR or video camera.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: July 6, 2021
    Assignee: CLEARPATH ROBOTICS INC.
    Inventors: Ryan Christopher Gariepy, Matthew Allen Rendall, Simon Drexler, Roydyn Clayton, Shahab Kaynama
  • Patent number: 11650583
    Abstract: A system for remote viewing and control of self-driving vehicles includes: an execution subsystem for deployment at an execution location containing a self-driving vehicle. The execution subsystem includes: a capture assembly to capture multimedia data depicting the execution location, and a server to receive the multimedia data and transmit the multimedia data for presentation at an operator location remote from the execution location. The server relays operational commands and operational status data between the self-driving vehicle and the operator location. The system includes an operator subsystem for deployment at the operator location, including: a display assembly, and a computing device to: (a) establish a connection with the server; (b) receive the multimedia data from the server and control the display assembly to present the multimedia data; and (c) receive control commands and transmit the control commands to the server for execution by the self-driving vehicle.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: May 16, 2023
    Assignee: CLEARPATH ROBOTICS INC.
    Inventor: Ryan Christopher Gariepy
  • Patent number: 11343758
    Abstract: Systems and methods for WiFi mapping an industrial facility are disclosed. The system comprises a self-driving vehicle having a WiFi transceiver. The self-driving vehicle communicates with a fleet-management using the WiFi transceiver, via a WiFi access point. The self-driving vehicle receives a mission from the fleet-management system, and moves to a destination location based on the mission, using autonomous navigation. While executing the mission, the self-driving vehicle simultaneously measures the received signal strength indication of the WiFi access point and other WiFi access points in the facility, and stores the received signal strength indication in association with the location at which the received signal strength indication was measured.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: May 24, 2022
    Assignee: Clearpath Robotics Inc.
    Inventors: Anthony William Tod, Ryan Christopher Gariepy, Ivor Wanders, Andrew Clifford Blakey
Narrow Results

Filter by US Classification