Abstract: An electrical circuit device made in integrated monolithic form has low level operating characteristics of a MOS device and high level operating characteristics of a Triac. The structure includes two double diffused MOS transistors which have merged drain regions. At higher voltage and current levels a lateral Triac structure is triggered by the MOS devices. Alternatively, separate terminal contacts can be made to the P and N regions comprising the MOS transistor source and channel regions with the Triac triggered conventionally by an externally applied control voltage.
Type:
Grant
Filed:
September 18, 1978
Date of Patent:
April 22, 1980
Assignee:
The Board of Trustees of the Leland Stanford Junior University
Abstract: The present invention relates generally to the field of boat transports or carriers which may be mounted to a sidewall of the boat by a bracket. The carrier has a frame and a wheel assembly that has a horizontal cross member, a first vertical fork, a second vertical fork, a mounting bracket and a wheel. An individual may place two boat-mounted brackets on to opposing sides of a boat, so that the user may easily wheel the boat to the desired location. Once at the location, the user can then remove each wheel assembly and use the boat as normal.
Abstract: A two-dimensional bulk acoustic wave correlator-convolver having an acoustic mirror positioned two focal lengths from an integrated circuit-acoustic transducer array. The image, rather than the Fourier transform, of the input spatial distribution is returned to the transducer array by the mirror.
Type:
Grant
Filed:
April 5, 1983
Date of Patent:
June 11, 1985
Assignee:
The United States of America as represented by the Secretary of the Air Force
Inventors:
Bert A. Auld, Donald W. Pettibone, James D. Plummer
Abstract: A thyristor device can be used to implement a variety of semiconductor memory circuits, including high-density memory-cell arrays and single cell circuits. In one example embodiment, the thyristor device includes doped regions of opposite polarity, and a first word line that is used to provide read and write access to the memory cell. A second word line is located adjacent to and separated by an insulative material from one of the doped regions of the thyristor device for write operations to the memory cell, for example, by enhancing the switching of the thyristor device from a high conductance state to a low conductance state and/or from the low conductance state to the high conductance. This type of memory circuit can be implemented to significantly reduce standby power consumption and access time.
Type:
Grant
Filed:
August 18, 2005
Date of Patent:
April 29, 2008
Assignee:
The Board of Trustees of the Leland Stanford Junior University
Abstract: A thyristor device can be used to implement a variety of semiconductor memory circuits, including high-density memory-cell arrays and single cell circuits. In one example embodiment, the thyristor device includes doped regions of opposite polarity, and a first word line that is used to provide read and write access to the memory cell. A second word line is located adjacent to and separated by an insulative material from one of the doped regions of the thyristor device for write operations to the memory cell, for example, by enhancing the switching of the thyristor device from a high conductance state to a low conductance state and/or from the low conductance state to the high conductance. This type of memory circuit can be implemented to significantly reduce standby power consumption and access time.
Type:
Grant
Filed:
February 12, 2004
Date of Patent:
November 22, 2005
Assignee:
The Board of Trustees of the Leland Stanford Junior University
Abstract: Negative differential resistance devices are implemented to facilitate current flow under different operating conditions. According to an example embodiment of the present invention, an NDR device is arranged for selective passage of current through relatively high tunneling efficiency regions and relatively low tunneling efficiency regions. In some applications, a gate is used to accumulate carriers to facilitate the passage of current that is predominantly one of tunneling current and generation current, respectively, by controlling the passage of current through a relatively high tunneling efficiency region and a relatively low tunneling efficiency region. In some implementations, the NDR device is arranged to mitigate leakage in a storage device using a two-terminal connection.
Type:
Grant
Filed:
November 29, 2006
Date of Patent:
March 24, 2009
Assignee:
The Board of Trustees of the Leland Stanford Junior University
Inventors:
Yue Liang, Kailash Gopalakrishnan, Peter Griffin, James D. Plummer
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8 F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other types of NDR-based SRAMs.
Type:
Grant
Filed:
March 20, 2002
Date of Patent:
April 27, 2004
Assignee:
The Board of Trustees of the Leland Stanford Junior
University
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8 F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other types of NDR-based SRAMs.
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8 F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other types of NDR-based SRAMs.
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8 F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other types of NDR-based SRAMs.
Abstract: A thyristor device can be used to implement a variety of semiconductor memory circuits, including high-density memory-cell arrays and single cell circuits. In one example embodiment, the thyristor device includes doped regions of opposite polarity, and a first word line that is used to provide read and write access to the memory cell. A second word line is located adjacent to and separated by an insulative material from one of the doped regions of the thyristor device for write operations to the memory cell, for example, by enhancing the switching of the thyristor device from a high conductance state to a low conductance state and/or from the low conductance state to the high conductance. This type of memory circuit can be implemented to significantly reduce standby power consumption and access time.
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8 F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other types of NDR-based SRAMs.
Type:
Grant
Filed:
March 20, 2002
Date of Patent:
March 4, 2003
Assignee:
The Board of Trustees of the Leland Stanford Junior
University
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other type of NDR-based SRAMs.
Type:
Grant
Filed:
September 21, 2000
Date of Patent:
September 10, 2002
Assignee:
The Board of Trustees of the Leland Standford Junior
University
Abstract: An electrical circuit device made in integrated monolithic form has low level operating characteristics of a MOS device and high level operating characteristics of a Triac. The structure includes two double diffused MOS transistors which have merged drain regions. At higher voltage and current levels a lateral Triac structure is triggered by the MOS devices. Alternatively, separate terminal contacts can be made to the P and N regions comprising the MOS transistor source and channel regions with the Triac triggered conventionally by an externally applied control voltage.
Type:
Grant
Filed:
December 5, 1983
Date of Patent:
May 1, 1990
Assignee:
Board of Trustees of the Leland Stanford Jr. Univ.