Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8 F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other types of NDR-based SRAMs.
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other type of NDR-based SRAMs.
Type:
Grant
Filed:
September 21, 2000
Date of Patent:
September 10, 2002
Assignee:
The Board of Trustees of the Leland Standford Junior
University
Abstract: A novel capacitively coupled NDR device can be used to implement a variety of semiconductor circuits, including high-density SRAM cells and power thyristor structures. In one example embodiment, the NDR device is used as a thin vertical PNPN structure with capacitively-coupled gate-assisted turn-off and turn-on mechanisms. An SRAM based on this new device is comparable in cell area, standby current, architecture, speed, and fabrication process to a DRAM of the same capacity. In one embodiment, an NDR-based SRAM cell consists of only two elements, has an 8 F2 footprint, can operate at high speeds and low voltages, has a good noise-margin, and is compatible in fabrication process with main-stream CMOS. This cell significantly reduces standby power consumption compared to other types of NDR-based SRAMs.
Type:
Grant
Filed:
March 20, 2002
Date of Patent:
April 27, 2004
Assignee:
The Board of Trustees of the Leland Stanford Junior
University