Search Patents
  • Publication number: 20110115483
    Abstract: A magnetic resonance coil comprises a first set of coil elements (54, 56, 80) operatively connectable with a transmit channel (66, 74) to couple with a transmit region of sensitivity for a selected load at a magnetic field strength greater than 3 Tesla, and a second set of coil elements (52, 54, 82) operatively connectable with a receive channel (66, 74) to couple with a receive region of sensitivity for the selected load at the magnetic field strength greater than 3 Tesla. The first set of coil elements is arranged proximate to but not surrounding the transmit region of sensitivity, and the second set of coil elements is arranged proximate to but not surrounding the receive region of sensitivity. The first set of coil elements and the second set of coil elements having at least one coil element (52, 56) not in common.
    Type: Application
    Filed: December 12, 2008
    Publication date: May 19, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Zhiyong Zhai, Robert Gauss, Eddy Yu Ping WONG, Michael A. Morich, Kevin M. Nieman, Gordon D. DeMeester
  • Patent number: 8441259
    Abstract: A magnetic resonance coil comprises a first set of coil elements (54, 56, 80) operatively connectable with a transmit channel (66, 74) to couple with a transmit region of sensitivity for a selected load at a magnetic field strength greater than 3 Tesla, and a second set of coil elements (52, 54, 82) operatively connectable with a receive channel (66, 74) to couple with a receive region of sensitivity for the selected load at the magnetic field strength greater than 3 Tesla. The first set of coil elements is arranged proximate to but not surrounding the transmit region of sensitivity, and the second set of coil elements is arranged proximate to but not surrounding the receive region of sensitivity. The first set of coil elements and the second set of coil elements having at least one coil element (52, 56) not in common.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 14, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Zhiyong Zhai, Robert Gauss, Eddy Yu Ping Wong, Michael A. Morich, Kevin M. Nieman, Gordon D. DeMeester
  • Patent number: 7180292
    Abstract: An MRIS gradient coil structure has coiled tubes for carrying a cooling medium to cool the coil structure. The inlet and outlet of the coiled tubes are insulated electrically from the remainder thereof by a ceramic insulator.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: February 20, 2007
    Assignee: Tesla Engineering Ltd
    Inventor: Joseph Andrew Coughlin
  • Publication number: 20120062230
    Abstract: Apparatus and method that includes amplifiers for transceiver antenna elements, and more specifically to power amplifying an RF (radio frequency) signal using a distributed power amplifier having electronic devices (such as field-effect transistors) that are thermally and/or mechanically connected to each one of a plurality of antenna elements (also called coil elements) to form a hybrid coil-amplifier (e.g., for use in a magnetic-resonance (MR) imaging or spectroscopy machine), and that is optionally adjusted from a remote location, optionally including remotely adjusting its gains, electrical resistances, inductances, and/or capacitances (which controls the magnitude, phase, frequency, spatial profile, and temporal profile of the RF signal)—and, in some embodiments, the components are compatible with, and function in, high fields (such as a magnetic field of up to and exceeding one tesla or even ten tesla or more and/or an electric field of many thousands of volts per meter).
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Inventors: John Thomas Vaughan, JR., Charles A. Lemaire
  • Patent number: 8604791
    Abstract: Apparatus and method that includes amplifiers for transceiver antenna elements, and more specifically to power amplifying an RF (radio frequency) signal using a distributed power amplifier having electronic devices (such as field-effect transistors) that are thermally and/or mechanically connected to each one of a plurality of antenna elements (also called coil elements) to form a hybrid coil-amplifier (e.g., for use in a magnetic-resonance (MR) imaging or spectroscopy machine), and that is optionally adjusted from a remote location, optionally including remotely adjusting its gains, electrical resistances, inductances, and/or capacitances (which controls the magnitude, phase, frequency, spatial profile, and temporal profile of the RF signal)—and, in some embodiments, the components are compatible with, and function in, high fields (such as a magnetic field of up to and exceeding one tesla or even ten tesla or more and/or an electric field of many thousands of volts per meter).
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: December 10, 2013
    Assignees: Life Services, LLC, Regents of the University of Minnesota
    Inventors: John Thomas Vaughan, Jr., Charles A. Lemaire
  • Publication number: 20140139219
    Abstract: An MRIS gradient coil sub-assembly comprising a first coil layer comprising a first conducting coil portion, a second coil layer comprising a second conductive coil portion electrically connected with the first conductive coil portion so that the first and second conductive coil portions act together as one coil, and a B-stage material consolidation layer sandwiched between the first and second coil layers.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 22, 2014
    Applicant: TESLA ENGINEERING LIMITED
    Inventor: Allen Raymond Camp
  • Patent number: 11543479
    Abstract: An MRI system coil insert 2 for use within a bore B of a main MRI system 1, the coil insert 2 comprising at least one gradient coil, for creating a spatially varying magnetic field along a respective axis and being arranged to be electrically driven at an ultrasonic frequency.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: January 3, 2023
    Assignees: Tesla Dynamic Coils BV, Futura Composites B.V., UMC Utrecht Holding B.V.
    Inventors: Dennis Klomp, Edwin Versteeg, Jeroen Siero, Martino Borgo
  • Publication number: 20120068708
    Abstract: An MRIS gradient coil sub-assembly comprising a first coil layer comprising a first conducting coil portion, a second coil layer comprising a second conductive coil portion electrically connected with the first conductive coil portion so that the first and second conductive coil portions act together as one winding, and a B-stage material consolidation layer sandwiched between the first and second coil layers.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: TESLA ENGINEERING LIMITED
    Inventor: Allen Raymond Camp
  • Publication number: 20040119474
    Abstract: A method for reducing the calibration time of magnetic imaging resonance systems at fields of 1 Tesla or higher utilizing silicone oil type phantom tanks. A small amount of a non-ionic paramagnetic compound such as gadolinium beta-diketonate (a common metallocomplex) is added to the silicone oil to reduce the spin-lattice relaxation time of the silicone oil in magnetic resonance phantoms. The amount of reduction of the spin lattice relaxation time is inversely proportional to the amount of paramagnetic compound added to the silicone oil in a given phantom tank and thus can be controlled in a precise manner.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Inventor: Timothy W. Skloss
  • Patent number: 6911821
    Abstract: A gradient coil structure for use in MRI apparatus has a main gradient coil 20 and a shielding coil 21, a portion of the shielding coil being disposed outwardly from the main coil. The coils are configured so that in a peripheral region 25 relative to the image region 22 the are almost coincident and the coils extend forwardly at an angle to the remainder of the main coil so that the main coil appears concave from the imaging region 22. This arrangement provides improved shielding efficiency.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: June 28, 2005
    Assignee: Tesla Engineering Ltd.
    Inventor: Frederick Thomas David Goldie
  • Publication number: 20020050818
    Abstract: The present invention provides magnetic resonance imaging coils for pursuing large volume images at high magnetic field strengths of 3 Tesla or higher. Also provided are methods of obtaining images by utilizing such magnetic resonance imaging coils. Specifically, the present invention provides a high field large volume resonator comprising a conductive cavity with segments of coaxial cable with exposed center conductors passing through, thereby creating a voltage node corresponding to the center of the conductive cavity. The cavity dimensions of the high frequency large volume resonator are sufficiently large to accommodate a human subject or other appropriate subject of similar size.
    Type: Application
    Filed: May 11, 2001
    Publication date: May 2, 2002
    Inventors: James Michael Vaughn, Edward G. Walsh, Jan Anthonie den Hollander
  • Patent number: 6791327
    Abstract: A method for reducing the calibration time of magnetic imaging resonance systems at fields of 1 Tesla or higher utilizing silicone oil type phantom tanks. A small amount of a non-ionic paramagnetic compound such as gadolinium beta-diketonate (a common metallocomplex) is added to the silicone oil to reduce the spin-lattice relaxation time of the silicone oil in magnetic resonance phantoms. The amount of reduction of the spin lattice relaxation time is inversely proportional to the amount of paramagnetic compound added to the silicone oil in a given phantom tank and thus can be controlled in a precise manner.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: September 14, 2004
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventor: Timothy W. Skloss
  • Patent number: 6590393
    Abstract: The present invention provides magnetic resonance imaging coils for pursuing large volume images at high magnetic field strengths of 3 Tesla or higher. Also provided are methods of obtaining images by utilizing such magnetic resonance imaging coils. Specifically, the present invention provides a high field large volume resonator comprising a conductive cavity with segments of coaxial cable with exposed center conductors passing through, thereby creating a voltage node corresponding to the center of the conductive cavity. The cavity dimensions of the high frequency large volume resonator are sufficiently large to accommodate a human subject or other appropriate subject of similar size.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: July 8, 2003
    Assignee: UAB Research Foundation
    Inventors: James Michael Vaughn, Edward G. Walsh, Jan Anthonie den Hollander
  • Patent number: 11686791
    Abstract: An MRI system receive coil arrangement 3 for use with a main MRI scanner arrangement. The arrangement includes at least one primary receive coil 6 having a first impedance at a predetermined frequency and a first size defined by a cross-sectional area bounded by the primary receive coil and at least one auxiliary receive coil 7 having a second impedance at said predetermined frequency and a second size defined by a cross-sectional area bounded by the auxiliary receive coil wherein the first impedance is lower than the second impedance and the first size is larger than the second size.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: June 27, 2023
    Assignees: Tesla Dynamic Coils BV, Futura Composites B.V., UMC Utrecht Holding B.V.
    Inventors: Dennis Klomp, Stefan Zijlema, Catalina Arteaga De Castro, Martino Borgo
  • Patent number: 8283926
    Abstract: A method and system are disclosed for gathering information about an object including single domain particles which have a diameter in the range of about 5 to 80 nm. In one aspect, a method includes generating a static magnetic field of less than about 0.1 Tesla on the object and generating an RF energy, pulsed or continuous wave, so as to generate electron paramagnetic resonance of the single domain particles. The method also includes detecting the electron paramagnetic resonance of the single domain particles in the form of an image of the object. The single domain particles may have a predetermined diameter and a predetermined saturation magnetization and the applied magnetic field may be such that the single domain particles reach a magnetization being at least about 10% of the saturation magnetization. The method may be used for detecting tags in an object and for activating tags.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 9, 2012
    Assignee: IMEC
    Inventors: Stephanie Teughels, Peter Vaes
  • Patent number: 7145337
    Abstract: Apparatus (10) for use in MRIS includes a coil arrangement having drive coils (20), shield coils (30) and a power supply unit (PSU) (40). The drive coils (20) and the shield coils (30) are connected in series to the PSU (40) to form a circuit. The shield coils (30) are connected between a first and second length of the drive coils (20) so as to straddle a virtual earth of the circuit. This is advantageous in minimising potential differences within the shield coil (30) assembly and thereby in minimising partial discharge therewithin. Partial discharge between adjacent parts of the drive coils (20) is minimised by spatially arranging those coils (20) such that parts thereof that are at a high electrical potential are spatially adjacent parts thereof that are simultaneously at a potential of the same polarity of at a low electrical potential of either polarity.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: December 5, 2006
    Assignee: Tesla Engineering Limited
    Inventors: Frederick Thomas Goldie, Michael Colin Begg
  • Publication number: 20030210052
    Abstract: Disclosed is to enable to grasp the behavior of protein in the cell by realizing a nuclear magnetic resonance imaging method having spatial resolutions on the scales of cells, and to provide an industrial measure for developing high-quality protein utilizing this technology. In order to realize spatial resolutions in the order of one-tenth the size of the cell, a supersensitive measurement is realized by the combination of the solenoid detector coil and the high magnetic field NMR of not less than 14 Tesla, which has not been used so far. Subsequently, it is combined with the magnetic field uniformity of 0.001 ppm, so that the supersensitive NMR imaging of 0.5 &mgr;m, which has been impossible in the related art, is realized. The physico-chemical behavior of protein molecules can easily be clarified, and thus the bioinfomatic network or the process of metabolism of the cell can be brought out.
    Type: Application
    Filed: December 23, 2002
    Publication date: November 13, 2003
    Inventors: Michiya Okada, Tsuyoshi Wakuda, Shigeru Kakugawa, Hiroshi Morita, Katsuzou Aihara
  • Publication number: 20010033166
    Abstract: There is described a quadrature radio frequency (RF) coil design to be used with appropriate magnetic resonance imaging (MRI) hardware to obtain images of the human body. The design provides good RF field homogeneity over a volume suitable for thoracic diagnostic imaging, and operates in quadrature mode as a transmit and/or receive coil. The design is for use with a 0.33 tesla permanent, C shaped magnet with a vertical main field but is of general applicability. The coil includes two parallel annular coils connected at top and bottom by two plate conductors. The plates are split longitudinally and transversely and connected across the splits by capacitors to define two modes of resonant oscillation which can be tuned separately and independently to the same frequency, where the modes define fields which are mutually orthogonal. The fields are at right angles to the magnetic field and to the plate conductors so that the sample can be inserted through the openings at right angles to the plates.
    Type: Application
    Filed: February 9, 2001
    Publication date: October 25, 2001
    Inventors: David Hoult, Jarod Matwiy
  • Publication number: 20120068707
    Abstract: An MRIS gradient coil assembly 2A comprising a first coil layer comprising a first conductive coil portion 3X and a second coil layer comprising a second conductive coil portion 3Y. A first screening layer 6X is disposed between the first 3X and second 3Y coil layers and comprises at least one sheet of screening material. At least one insulating layer 4X comprising insulating material is provided between the first 3X conductive coil portion and the first screening layer 6X. Further the assembly comprises at least one discrete contact means 7 electrically connecting the first conductive coil portion 3X to the sheet of screening material 6X whilst the sheet of screening material 6X is kept from electrically contacting with the first conductive coil portion 3X, except via the at least one discrete contact means, by the at least one layer of insulating material 4X. The screening material might typically comprise a semi-conductive sheet.
    Type: Application
    Filed: June 9, 2011
    Publication date: March 22, 2012
    Applicant: TESLA ENGINEERING LIMITED
    Inventor: Michael Colin Begg
  • Patent number: 8965468
    Abstract: A persistent-mode High Temperature Superconductor (HTS) shim coil is provided having at least one rectangular shaped thin sheet of HTS, wherein the thin sheet of HTS contains a first long portion, a second long portion parallel to first long portion, a first end, and a second end parallel to the first end. The rectangular shaped thin sheet of high-temperature superconductor has a hollow center and forms a continuous loop. In addition, the first end and the second end are folded toward each other forming two rings, and the thin sheet of high-temperature superconductor has a radial build that is less than 5 millimeters (mm) and able to withstand very strong magnetic field ranges of greater than approximately 12 Tesla (T) within a center-portion of a superconducting magnet of a superconducting magnet assembly.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Massachusetts Institute of Technology
    Inventor: Yukikazu Iwasa