Search Patents
  • Patent number: 9662507
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 30, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9610457
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 4, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9687664
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: June 27, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9630015
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 25, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim