Search Patents
  • Patent number: 7772543
    Abstract: A system and method for manipulating and processing nanowires in solution with arrays of holographic optical traps. The system and method of the present invention is capable of creating hundreds of individually controlled optical traps with the ability to manipulate objects in three dimensions. Individual nanowires with cross-sections as small as 20 nm and lengths exceeding 20 ?m are capable of being isolated, translated, rotated and deposited onto a substrate with holographic optical trap arrays under conditions where single traps have no discernible influence. Spatially localized photothermal and photochemical processes induced by the well-focused traps can also be used to melt localized domains on individual nanowires and to fuse nanowire junctions.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: August 10, 2010
    Assignees: New York University, Harvard University
    Inventors: David G. Grier, Ritesh Agarwal, Guihua Yu, Charles M. Lieber, Kosta Ladavac, Yael Roichman
  • Publication number: 20070032023
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1.
    Type: Application
    Filed: October 4, 2006
    Publication date: February 8, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Publication number: 20170073841
    Abstract: The present invention generally relates to nanoscale wires, and to methods of producing nanoscale wires. In some aspects, the nanoscale wires are nanowires comprising a core which is continuous and a shell which may be continuous or discontinuous, and/or may have regions having different cross-sectional areas. In some embodiments, the shell regions are produced by passing the shell material (or a precursor thereof) over a core nanoscale wire under conditions in which Plateau-Raleigh crystal growth occurs, which can lead to non-homogenous deposition of the shell material on different regions of the core. The core and the shell each independently may comprise semiconductors, and/or non-semiconductor materials such as semiconductor oxides, metals, polymers, or the like. Other embodiments are generally directed to systems and methods of making or using such nanoscale wires, devices containing such nanoscale wires, or the like.
    Type: Application
    Filed: May 6, 2015
    Publication date: March 16, 2017
    Inventors: Charles M. Lieber, Robert Day, Max Nathan Mankin, Ruixuan Gao, Thomas J. Kempa
  • Patent number: 11644437
    Abstract: There is provided a nanopore sensor including cis and trans fluidic reservoirs. A nanopore is provided in a support structure separating the cis and trans reservoirs. The nanopore has an inlet in fluidic connection with the cis fluidic reservoir and an outlet in fluidic connection with the trans fluidic reservoir. The cis fluidic reservoir has a fluidic access resistance, RC, the trans fluidic reservoir has a fluidic access resistance, RT, and the nanopore has a fluidic resistance, RP. RP is of the same order of magnitude as RT and both RP and RT are at least an order of magnitude greater than RC. An electrical transduction element is disposed at a nanopore sensor site that exposes the transduction element to the trans reservoir. An electrical circuit is connected to the electrical transduction element for producing an electrical signal indicative of changes in electrical potential local to the trans reservoir.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: May 9, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Ping Xie, Charles M. Lieber
  • Publication number: 20140073063
    Abstract: The present invention generally relates to nanoscale wires and tissue engineering. Systems and methods are provided in various embodiments for preparing cell scaffolds that can be used for growing cells or tissues, where the cell scaffolds comprise nanoscale wires. In some cases, the nanoscale wires can be connected to electronic circuits extending externally of the cell scaffold. Such cell scaffolds can be used to grow cells or tissues which can be determined and/or controlled at very high resolutions, due to the presence of the nanoscale wires, and such cell scaffolds will find use in a wide variety of novel applications, including applications in tissue engineering, prosthetics, pacemakers, implants, or the like. This approach thus allows for the creation of fundamentally new types of functionalized cells and tissues, due to the high degree of electronic control offered by the nanoscale wires and electronic circuits.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 13, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Bozhi Tian, Jia Liu
  • Publication number: 20170352542
    Abstract: The present invention generally relates to nanoscale wires and, in particular, to nanoscale wires with heterojunctions, such as tip-localized homo- or heterojunctions. In one aspect, the nanoscale wire may include a core, an inner shell surrounding the core, and an outer shell surrounding the inner shell. The outer shell may also contact the core, e.g., at an end portion of the nanoscale wire. In some cases, such nanoscale wires may be used as electrical devices. For example a p-n junction may be created where the inner shell is electrically insulating, and the core and the outer shell are p-doped and n-doped. Other aspects of the present invention generally relate to methods of making or using such nanoscale wires, devices, or kits including such nanoscale wires, or the like.
    Type: Application
    Filed: October 29, 2015
    Publication date: December 7, 2017
    Inventors: Charles M. Lieber, Ruixuan Gao, Max Nathan Mankin, Robert Day, Hong-Gyu Park, You-Shin No
  • Publication number: 20190391112
    Abstract: There is provided a multi-channel nanopore sensor having a plurality of independent nanopore sensors. Each independent nanopore sensor includes a nanopore disposed in a support structure. A fluidic connection is between a first fluidic reservoir, common to all of the independent nanopore sensors, and an inlet to the nanopore, with a first ionic solution of a first ionic concentration disposed in the first fluidic reservoir. A fluidic connection is between a second fluidic reservoir, common to all of the independent nanopore sensors, and an outlet from the nanopore, with a second ionic solution of a second ionic concentration, different than the first ionic concentration, disposed in the second fluidic reservoir. An electrical transduction element, disposed in contact with that ionic solution having a lower ionic concentration, is arranged at a site that produces an electrical signal indicative of electrical potential local to that ionic solution having a lower ionic concentration.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 26, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Ping Xie
  • Publication number: 20070026645
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1.
    Type: Application
    Filed: October 4, 2006
    Publication date: February 1, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Publication number: 20070032051
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1.
    Type: Application
    Filed: October 4, 2006
    Publication date: February 8, 2007
    Applicant: President and fellows of Harvard College
    Inventors: Charles Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Publication number: 20050164432
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and my have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1.
    Type: Application
    Filed: March 17, 2005
    Publication date: July 28, 2005
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Publication number: 20070032052
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1.
    Type: Application
    Filed: October 4, 2006
    Publication date: February 8, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Publication number: 20070252136
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1.
    Type: Application
    Filed: July 2, 2007
    Publication date: November 1, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Patent number: 11067534
    Abstract: There is provided a multi-channel nanopore sensor having a plurality of independent nanopore sensors. Each independent nanopore sensor includes a nanopore disposed in a support structure. A fluidic connection is between a first fluidic reservoir, common to all of the independent nanopore sensors, and an inlet to the nanopore, with a first ionic solution of a first ionic concentration disposed in the first fluidic reservoir. A fluidic connection is between a second fluidic reservoir, common to all of the independent nanopore sensors, and an outlet from the nanopore, with a second ionic solution of a second ionic concentration, different than the first ionic concentration, disposed in the second fluidic reservoir. An electrical transduction element, disposed in contact with that ionic solution having a lower ionic concentration, is arranged at a site that produces an electrical signal indicative of electrical potential local to that ionic solution having a lower ionic concentration.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: July 20, 2021
    Inventors: Charles M. Lieber, Ping Xie
  • Publication number: 20150351691
    Abstract: The present invention generally relates to nanoscale wires and, in particular, to probes comprising nanoscale wires for use in determining electrical and/or chemical properties in a tissue or other material. For example, in certain embodiments, a probe comprising nanoscale wires may be inserted into an electrically-active tissue, such as the heart or the brain, and the nanoscale wires may be used to determine electrical properties of the tissue, e.g., action potentials or other electrical activity. In addition, in some embodiments, a nanoscale wire may be modified to determine chemical properties of a tissue. A probe comprising such nanoscale wires can be inserted into a tissue (not necessarily electrically active) to determine various properties, e.g., chemical or mechanical properties. In addition, in some embodiments, a probe is provided that can be used to stimulate tissues, e.g., by providing electrical stimuli via one or more nanoscale wires.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 10, 2015
    Inventors: Charles M. Lieber, Or A. Shemesh, Ruixuan Gao
  • Publication number: 20100143582
    Abstract: The present invention generally relates to liquid films containing nanostructured materials, and, optionally, the use of this arrangement to organize nanostructures and to transfer the nanostructures to a surface. Liquid films containing nanostructures, such as nanoscale wires, can be formed in a gas such as air. By choosing an appropriate liquid, a liquid film can be expanded, for example to form a “bubble” having a diameter of at least about 5 cm or 10 cm. The size of the bubble can be controlled, in some cases, by controlling the viscosity of the liquid film. In some embodiments, the viscosity can be controlled to be between about 15 Pa s and about 25 Pa s, or controlled using a mixture of an aqueous liquid and an epoxy. In some cases, the film of liquid may be contacted with a surface, which can be used to transfer at least some of the nanostructures to the surface. In some cases, the nanostructures may be transferred as an orderly or aligned array.
    Type: Application
    Filed: October 10, 2007
    Publication date: June 10, 2010
    Inventors: Charles M. Lieber, Guihua Yu, Anyuan Cao
  • Publication number: 20090299213
    Abstract: The present invention generally relates to nanobioelectronics and, in some cases, to circuits comprising nanoelectronic elements, such as nanotubes and/or nanowires, and biological components, such as neurons. In one aspect, cells, such as neurons, are positioned in electrical communication with one or more nanoscale wires. The nanoscale wires may be used to stimulate the cells, and/or determine an electrical condition of the cells. More than one nanoscale wire may be positioned in electrical communication with the cell, for example, in distinct regions of the cell. However, the nanoscale wires may be positioned such that they are relatively close together, for example, spaced apart by no more than about 200 nm. The nanoscale wires may be disposed on a substrate, for example, between electrodes, and the cells may be adhered to the substrate, for example, using cell adhesion factors such as polylysine.
    Type: Application
    Filed: March 15, 2007
    Publication date: December 3, 2009
    Applicant: President and Fellows of Harvard College
    Inventors: Fernando Patolsky, Brian P. Timko, Guihua Yu, Charles M. Lieber
  • Patent number: 10435817
    Abstract: The present invention generally relates to nanoscale wires, and to methods of producing nanoscale wires. In some aspects, the nanoscale wires are nanowires comprising a core which is continuous and a shell which may be continuous or discontinuous, and/or may have regions having different cross-sectional areas. In some embodiments, the shell regions are produced by passing the shell material (or a precursor thereof) over a core nanoscale wire under conditions in which Plateau-Raleigh crystal growth occurs, which can lead to non-homogenous deposition of the shell material on different regions of the core. The core and the shell each independently may comprise semiconductors, and/or non-semiconductor materials such as semiconductor oxides, metals, polymers, or the like. Other embodiments are generally directed to systems and methods of making or using such nanoscale wires, devices containing such nanoscale wires, or the like.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: October 8, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Robert Day, Max Nathan Mankin, Ruixuan Gao, Thomas J. Kempa
  • Patent number: 9786850
    Abstract: The present invention generally relates to nanoscale wires and tissue engineering. Systems and methods are provided in various embodiments for preparing cell scaffolds that can be used for growing cells or tissues, where the cell scaffolds comprise nanoscale wires. In some cases, the nanoscale wires can be connected to electronic circuits extending externally of the cell scaffold. Such cell scaffolds can be used to grow cells or tissues which can be determined and/or controlled at very high resolutions, due to the presence of the nanoscale wires, and such cell scaffolds will find use in a wide variety of novel applications, including applications in tissue engineering, prosthetics, pacemakers, implants, or the like. This approach thus allows for the creation of fundamentally new types of functionalized cells and tissues, due to the high degree of electronic control offered by the nanoscale wires and electronic circuits.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: October 10, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Bozhi Tian, Jia Liu
  • Patent number: 10355229
    Abstract: The present invention generally relates to nanoscale wires and tissue engineering. Systems and methods are provided in various embodiments for preparing cell scaffolds that can be used for growing cells or tissues, where the cell scaffolds comprise nanoscale wires. In some cases, the nanoscale wires can be connected to electronic circuits extending externally of the cell scaffold. Such cell scaffolds can be used to grow cells or tissues which can be determined and/or controlled at very high resolutions, due to the presence of the nanoscale wires, and such cell scaffolds will find use in a wide variety of novel applications, including applications in tissue engineering, prosthetics, pacemakers, implants, or the like. This approach thus allows for the creation of fundamentally new types of functionalized cells and tissues, due to the high degree of electronic control offered by the nanoscale wires and electronic circuits.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 16, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Bozhi Tian, Jia Liu
  • Patent number: 8232584
    Abstract: Various aspects of the invention relate to nanoscale wire devices and methods of use for detecting analytes. In one aspect, the invention relates to a nanoscale electrical sensor array device, comprising at least one n-doped semiconductor nanoscale wire and at least one p-doped semiconductor nanoscale wire, each having a reaction entity immobilized thereon. Binding of an analyte to the immobilized reaction entity causes a detectable change in the electrical property of the nanoscale wire. In some embodiments, the reaction entity can be a nucleic acid that may interact with other nucleic acids, proteins, etc. In a specific embodiment, the nucleic acid may interact with an enzyme such as telomerase, which can extend the nucleic acid. In other embodiments, the analyte to be detected can be a toxin, virus or small molecule. Systems and methods of using such nanoscale devices are also disclosed, for example, within a microarray.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: July 31, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Fernando Patolsky, Gengfeng Zheng
Narrow Results

Filter by US Classification