Search Patents
  • Publication number: 20100243990
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 30, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20100022012
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Application
    Filed: September 30, 2009
    Publication date: January 28, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 8399339
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized Nanodetector devices are described.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 19, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20110315962
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized Nanodetector devices are described.
    Type: Application
    Filed: April 11, 2011
    Publication date: December 29, 2011
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20080211040
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Application
    Filed: February 27, 2008
    Publication date: September 4, 2008
    Applicant: President and fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7956427
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: June 7, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7385267
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: June 10, 2008
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenji Liang
  • Patent number: 7256466
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: August 14, 2007
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7911009
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 22, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7619290
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: November 17, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20110174619
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Application
    Filed: July 13, 2006
    Publication date: July 21, 2011
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
  • Patent number: 7399691
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: July 15, 2008
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
  • Patent number: 7129554
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: October 31, 2006
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 8153470
    Abstract: A method for selectively aligning and positioning semiconductor nanowires on a substrate by providing a substrate; patterning electrodes on a surface of the substrate; conditioning the surface of the substrate to attach semiconductor nanowires to the surface by functionalizing the surface with a first functional group having an affinity for the semiconductor nanowires; providing an environment in contact with the electrodes, the environment having suspended therein the semiconductor nanowires; and providing an electric field between the electrodes, thereby causing the nanowires in the environment to align between and electrically connect the electrodes to thereby form a semiconducting channel between the electrodes.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: April 10, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Publication number: 20100152057
    Abstract: The present invention generally relates to nanoscale wire devices and methods for use in determining analytes suspected to be present in a sample. The invention provides a nanoscale wire that has improved sensitivity, as the carrier concentration in the wire is controlled by an external gate voltage, such that the nanoscale wire has a Debye screening length that is greater than the average cross-sectional dimension of the nanoscale wire when the nanoscale wire is exposed to a solution suspected of containing an analyte. This Debye screening length (lambda) associated with the carrier concentration (p) inside nanoscale wire is adjusted by adjusting the gate voltage applied to an FET structure, such that the carriers in the nanoscale wire are depleted.
    Type: Application
    Filed: November 19, 2007
    Publication date: June 17, 2010
    Applicant: President and Fellows of Havard College
    Inventors: Charles M. Lieber, Xuan Gao, Gengfeng Zheng
  • Publication number: 20090057650
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: February 27, 2008
    Publication date: March 5, 2009
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln J. Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David C. Smith, Deli Wang, Zhaohui Zhong
  • Publication number: 20100155698
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: June 26, 2009
    Publication date: June 24, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln J. Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David C. Smith, Deli Wang, Zhaohui Zhong
  • Patent number: 7666708
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal is, axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less an 5 nanometers. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety assembling techniques may be used to fabricate devices from such a semiconductor.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: February 23, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Patent number: 7476596
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: January 13, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Publication number: 20110001117
    Abstract: The present invention generally relates to nanotechnology and sub-microelectronic devices that can be used in circuitry, and, in particular, to nanoscale wires and other nanostructures able to encode data. One aspect of the present invention is directed to a device comprising an electrical crossbar array comprising at least two crossed wires at a cross point. In some cases, at least one of the crossed wires is a nanoscale wire, and in certain instances, at least one of the crossed wires is a nanoscale wire comprising a core and at least one shell surrounding the core. For instance, the core may comprise a crystal (e.g., crystalline silicon) and the shell may be at least partially amorphous (e.g., amorphous silicon). In certain embodiments, the cross point may exhibit intrinsic current rectification, or other electrical behaviors, and the cross point can be used as a memory device.
    Type: Application
    Filed: January 21, 2009
    Publication date: January 6, 2011
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Yajie Dong, Wei Lu, Guihua Yu, Michael MeAlphine