Search Patents
  • Patent number: 7981427
    Abstract: A canine respiratory coronavirus (CRCV) that is present in the respiratory tract of dogs with canine infectious respiratory disease and which has a low level of homology to the enteric canine coronavirus, but which has a high level of homology to all bovine coronavirus strains (e.g., Quebec and LY138) and human coronavirus strain OC43.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 19, 2011
    Assignee: The Royal Veterinary College
    Inventors: John Brownlie, Victoria Jane Chalker, Kerstin Erles
  • Patent number: 7618802
    Abstract: The present invention provides a cDNA of a severe acute respiratory syndrome (SARS) coronavirus, recombinant SARS coronavirus vectors, and SARS coronavirus replicon particles. Also provided are methods of making the compositions of this invention and methods of using the compositions as immunogens and/or vaccines and/or to express heterologous nucleic acids.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: November 17, 2009
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Ralph S. Baric, Rhonda Roberts, Boyd Yount, Kristopher M. Curtis
  • Patent number: 7151163
    Abstract: The invention provides compositions and methods that are useful for preventing and treating a coronavirus infection in a subject. More specifically, the invention provides peptides and conjugates and pharmaceutical compositions containing those peptides and conjugates that block fusion of a coronavirus, such as the SARS virus, to a target cell. This blocking mechanism prevents or treats a coronavirus infection, such as a SARS infection, in a subject, such as a human subject.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 19, 2006
    Assignee: Sequoia Pharmaceuticals, Inc.
    Inventors: John W. Erickson, Abelardo Silva
  • Patent number: 12005114
    Abstract: Disclosed herein are mosaic coronavirus (MoCoV) spike (S) proteins or antigenic fragments thereof. Also disclosed herein are nucleic acid constructs comprising one or more nucleic acid sequences encoding a MoCoV S protein or antigenic fragment thereof. Also disclosed herein are coronavirus vaccine vectors comprising one or more polynucleotides encoding a MoCoV S protein or antigenic fragment thereof. Also disclosed herein are coronavirus vaccines comprising one or more MoCoV S proteins or antigenic fragments thereof and one or more carriers. Also disclosed herein are pharmaceutical compositions, host cells, and kits comprising one or more of the MoCoV S proteins or antigenic fragments thereof, nucleic acid constructs, coronavirus vaccine vectors, and/or coronavirus vaccines.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: June 11, 2024
    Assignee: VAXTHERA SAS
    Inventor: Jorge E. Osorio
  • Patent number: 7776340
    Abstract: A canine respiratory coronavirus (CRCV) that is present in the respiratory tract of dogs with canine infectious respiratory disease and which has a low level of homology to the enteric canine coronavirus, but which has a high level of homology to all bovine coronavirus strains (eg Quebec and LY138) and human coronavirus strain OC43. The CRCV spike, polymerase and hemagglutinin/esterase cDNA and protein partial sequences are listed in FIGS. (1) to (4), (13) and (14).
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: August 17, 2010
    Assignee: The Royal Veterinary College
    Inventors: John Brownlie, Victoria Jane Chalker, Kerstin Erles
  • Patent number: 6514502
    Abstract: The present invention provides methods for using Chinese hamster ovary (CHO) cells for the anchorage-dependent and suspension-culture propagation of coronaviruses, including bovine coronavirus. In one embodiment, bovine coronavirus VR874 is cultured in CHO-K1 cells under conditions in which the virus proliferates.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: February 4, 2003
    Assignee: Schering-Plough Veterinary Corporation
    Inventor: Michael J. Francis
  • Patent number: 10130701
    Abstract: The present invention provides a live, attenuated coronavirus comprising a variant replicase gene encoding polyproteins comprising a mutation in one or more of non-structural protein(s) (nsp)-10, nsp-14, nsp-15 or nsp-16. The coronavirus may be used as a vaccine for treating and/or preventing a disease, such as infectious bronchitis, in a subject.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: November 20, 2018
    Assignee: THE PIRBRIGHT INSTITUTE
    Inventors: Erica Bickerton, Sarah Keep, Paul Britton
  • Patent number: 10434168
    Abstract: The present invention discloses novel attenuated bovine coronavirus isolates, compositions comprising these isolate, and methods of using such compositions in vaccines, including in live vaccines. The present invention further discloses the administration of such vaccines, including the intranasal administration of such vaccines, to aid in the prevention of respiratory disease caused by bovine coronavirus.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: October 8, 2019
    Assignee: Intervet Inc.
    Inventors: Catherine M. Peters, Mark W. Mellencamp, Wenzhi Xue, Terri Wasmoen, Emilio Trigo
  • Patent number: 11911462
    Abstract: The invention relates to an immunogenic or vaccine composition against the 2019 novel coronavirus (SARS-CoV-2), comprising a nucleic acid construct encoding a SARS-CoV-2 coronavirus Spike (S) protein antigen or a fragment thereof comprising the receptor-binding domain, wherein the nucleic acid construct sequence is codon-optimized for expression in human.
    Type: Grant
    Filed: July 12, 2023
    Date of Patent: February 27, 2024
    Assignee: INSTITUT PASTEUR
    Inventors: Etienne Simon-Loriere, Matthieu Prot, Xavier Montagutelli
  • Patent number: 7691390
    Abstract: The present invention is directed to an isolated polypeptide containing SEQ ID NO: 1 or an immunogenic fragment thereof. Also disclosed is an isolated nucleic acid encoding the polypeptide or containing a sequence at least 70% identical to SEQ ID NO: 3. Within the scope of this invention are related expression vectors, host cells, and antibodies. Also disclosed are methods of producing the polypeptide, diagnosing coronavirus infection, and identifying a test compound for treating coronavirus infection.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 6, 2010
    Inventors: Fang-Jen Lee, Chia-Jung Yu, Ming-Fu Chang, Hong-Nerng Ho
  • Publication number: 20020115064
    Abstract: The present invention relates to polypeptides and proteins useful in the diagnosis and prevention of disease caused by feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV).
    Type: Application
    Filed: May 14, 2001
    Publication date: August 22, 2002
    Inventors: Timothy J. Miller, Albert Paul Reed, Sharon R. Klepfer, Nancy E. Pfeiffer, Brian T. Suiter, Elaine V. Jones
  • Patent number: 6974577
    Abstract: Inactivated scours vaccines for immunization and protection of bovine animals from disease caused by infection with bovine rotavirus and bovine coronavirus, which comprise and effective amount of at least one inactivated viral strain are described. Polyvalent inactivated vaccines further comprising an effective amount of an antigenic component which is protective against one or more additional pathogenic organisms or viruses are also disclosed. Said vaccines are prepared from one or more strains of rota- and coronavirus, C. perfringens Type C bacteria and E. coli bacteria, and combinations thereof. Preferably, a polyvalent inactivated vaccine is provided for parenteral administration. Passive immunity is achieved in neonatal calves via immunization of pregnant cows prior to birth.
    Type: Grant
    Filed: February 4, 2001
    Date of Patent: December 13, 2005
    Assignee: Novartris AG
    Inventors: Kelly Knape, Stephanie Dykstra, Mary Tinant
  • Patent number: 11524071
    Abstract: The compound N-(4-{[4-amino-2-butyl-1H-imidazo[4,5-c]quinolin-1-yl]oxy}butyl)octadecanamide is a useful drug compound for enhancing immune response and can be used, for example, as a coronavirus vaccine adjuvant.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: December 13, 2022
    Assignee: 3M Innovative Properties Company
    Inventor: Paul D. Wightman
  • Patent number: 7309493
    Abstract: Inactivated scours vaccines for immunization and protection of bovine animals from disease caused by infection with bovine rotavirus and bovine coronavirus, which comprise and effective amount of at least one inactivated viral strain are described. Polyvalent inactivated vaccines further comprising an effective amount of an antigenic component which is protective against one or more additional pathogenic organisms or viruses are also disclosed. Said vaccines are prepared from one or more strains of rota- and coronavirus, C. perfringens Type C bacteria and E. coli bacteria, and combinations thereof. Preferably, a polyvalent inactivated vaccine is provided for parenteral administration. Passive immunity is achieved in neonatal calves via immunization of pregnant cows prior to birth.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: December 18, 2007
    Assignee: Novartis AG
    Inventors: Kelly Knape, Stephanie Dykstra, Mary Tinant
  • Patent number: 7452542
    Abstract: The present invention is directed live, attenuated coronavirus vaccines. The vaccine comprises a viral genome encoding a p59 protein having at mutation at a specific tyrosine residue, and may include other attenuating mutations. Such viruses show reduced growth and pathogenicity in vivo.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: November 18, 2008
    Assignee: Vanderbilt University
    Inventor: Mark Denison
  • Patent number: 11684667
    Abstract: Coronaviruses, vaccines comprising the same, and methods for preventing disease. One embodiment of such includes a live, attenuated coronavirus comprising a variant replicase gene encoding polyproteins comprising a non-structural protein (nsp)-15, the replicase gene encoding the nsp15 and causes any change, including mutations and/or deletions, that affects the stability or activity of the nsp15.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: June 27, 2023
    Assignee: LOYOLA UNIVERSITY OF CHICAGO
    Inventors: Susan Baker, Xufang Deng
  • Patent number: 7892563
    Abstract: Compositions and methods for treating Severe Acute Respiratory Syndrome (SARS) are disclosed herein. Inhibitors of SARS-associated inflammatory cytokines are provided herein for use in treating SARS, including SARS-associated coronavirus (SARS-CoV) infection. Inhibitors of TNF are disclosed herein, as is the use of said inhibitors for treating SARS, including SARS-CoV. Methods of identifying and screening for said inhibitors are also provided.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: February 22, 2011
    Assignee: Wyeth Holdings Corporation
    Inventor: George R. Siber
  • Patent number: 7722886
    Abstract: Compositions and methods for treating Severe Acute Respiratory Syndrome (SARS) are disclosed herein. Inhibitors of SARS-associated inflammatory cytokines are provided herein for use in treating SARS, including SARS-associated coronavirus (SARS-CoV) infection. Inhibitors of TNF are disclosed herein, as is the use of said inhibitors for treating SARS, including SARS-CoV. Methods of identifying and screening for said inhibitors are also provided.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: May 25, 2010
    Assignee: Wyeth
    Inventor: George R. Siber
  • Patent number: 7279327
    Abstract: A helper cell for producing an infectious, replication defective, coronavirus (or more generally nidovirus) particle cell comprises (a) a nidovirus permissive cell; (b) a nidovirus replicon RNA comprising the nidovirus packaging signal and a heterologous RNA sequence, wherein the replicon RNA further lacks a sequence encoding at least one nidovirus structural protein; and (c) at least one separate helper RNA encoding the at least one structural protein absent from the replicon RNA, the helper RNA(s) lacking the nidovirus packaging signal. The combined expression of the replicon RNA and the helper RNA in the nidovirus permissive cell produces an assembled nidovirus particle which comprises the heterologous RNA sequence, is able to infect a cell, and is unable to complete viral replication in the absence of the helper RNA due to the absence of the structural protein coding sequence in the packaged replicon.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: October 9, 2007
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Kristopher M. Curtis, Boyd Yount, Ralph S. Baric
  • Patent number: 6280974
    Abstract: The present invention provides polynucleotide molecules encoding portions of the S protein from feline infectious peritonitis virus (FIPV). The present invention further provides polynucleotide molecules encoding the entire S protein or portions thereof from feline enteric coronavirus (FECV). The polynucleotide molecules of the present invention are useful as diagnostic reagents.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: August 28, 2001
    Assignee: Pfizer Inc
    Inventors: Timothy J. Miller, Albert Paul Reed, Sharon R. Klepfer, Nancy E. Pfeiffer, Brian T. Suiter, Elaine V. Jones