Search Patents
-
Patent number: 9092977Abstract: A controlled vehicle is provided that detects the presence of an emergency vehicle by monitoring the trajectories of vehicles that are sharing the road with the controlled vehicle. The controlled vehicle may determine that the trajectory of each of the monitored vehicles follows the same predetermined pattern. Based on detecting the predetermined pattern in the behavior of the monitored vehicles, the controlled vehicle may deduce that an emergency vehicle is present in the vicinity of the monitored vehicles and/or the controlled vehicle.Type: GrantFiled: August 25, 2014Date of Patent: July 28, 2015Assignee: Google Inc.Inventors: Anthony Scott Levandowski, Brian Cullinane
-
Patent number: 8825259Abstract: In an example implementation, an autonomous vehicle is configured to detect closures and lane shifts in a lane of travel. The vehicle is configured to operate in an autonomous mode and determine a presence of an obstacle substantially positioned in a lane of travel of the vehicle using a sensor. The lane of travel has a first side, a second side, and a center, and the obstacle is substantially positioned on the first side. The autonomous vehicle includes a computer system. The computer system determines a lateral distance between the obstacle and the center, compares the lateral distance to a pre-determined threshold, and provides instructions to control the autonomous vehicle based on the comparison.Type: GrantFiled: June 21, 2013Date of Patent: September 2, 2014Assignee: Google Inc.Inventor: David I. Ferguson
-
Patent number: 9195894Abstract: A computer-implemented method includes monitoring an environment external to a vehicle via a sensor of the vehicle or a mobile device. The monitoring includes recording audio or video signals based on an output of the sensor. Audio or image recognition is performed via the mobile device based on the audio or video signals. Based on results of the audio or image recognition, objects in an area through which the vehicle is to pass are detected. The method includes determining which ones of the detected objects satisfy a predetermined criteria. The predetermined criteria includes object features that are indiscernible or marginally discernible to a vehicle operator with a perception deficiency. Selected ones of the detected objects that satisfy the predetermined criteria are monitored. The vehicle operator is alerted of the selected ones of the detected objects with an alert predetermined to be discernible to the vehicle operator.Type: GrantFiled: November 4, 2014Date of Patent: November 24, 2015Assignee: Google Inc.Inventors: Juan Vasquez, Vinson Mok
-
Patent number: 8521352Abstract: A vehicle can be controlled in a first autonomous mode of operation by at least navigating the vehicle based on map data. Sensor data can be obtained using one or more sensors of the vehicle. The sensor data can be indicative of an environment of the vehicle. An inadequacy in the map data can be detected by at least comparing the map data to the sensor data. In response to detecting the inadequacy in the map data, the vehicle can be controlled in a second autonomous mode of operation and a user can be prompted to switch to a manual mode of operation. The vehicle can be controlled in the second autonomous mode of operation by at least obtaining additional sensor data using the one or more sensors of the vehicle and navigating the vehicle based on the additional sensor data.Type: GrantFiled: May 7, 2012Date of Patent: August 27, 2013Assignee: Google Inc.Inventors: David I. Ferguson, Dmitri A. Dolgov
-
Patent number: 8676430Abstract: A vehicle can be controlled in a first autonomous mode of operation by at least navigating the vehicle based on map data. Sensor data can be obtained using one or more sensors of the vehicle. The sensor data can be indicative of an environment of the vehicle. An inadequacy in the map data can be detected by at least comparing the map data to the sensor data. In response to detecting the inadequacy in the map data, the vehicle can be controlled in a second autonomous mode of operation and a user can be prompted to switch to a manual mode of operation. The vehicle can be controlled in the second autonomous mode of operation by at least obtaining additional sensor data using the one or more sensors of the vehicle and navigating the vehicle based on the additional sensor data.Type: GrantFiled: July 17, 2013Date of Patent: March 18, 2014Assignee: Google Inc.Inventors: David I. Ferguson, Dmitri Dolgov
-
Patent number: 8903591Abstract: A vehicle can be controlled in a first autonomous mode of operation by at least navigating the vehicle based on map data. Sensor data can be obtained using one or more sensors of the vehicle. The sensor data can be indicative of an environment of the vehicle. An inadequacy in the map data can be detected by at least comparing the map data to the sensor data. In response to detecting the inadequacy in the map data, the vehicle can be controlled in a second autonomous mode of operation and a user can be prompted to switch to a manual mode of operation. The vehicle can be controlled in the second autonomous mode of operation by at least obtaining additional sensor data using the one or more sensors of the vehicle and navigating the vehicle based on the additional sensor data.Type: GrantFiled: January 27, 2014Date of Patent: December 2, 2014Assignee: Google Inc.Inventors: David I. Ferguson, Dmitri Dolgov
-
Patent number: 8907771Abstract: A computer-implemented method includes monitoring an environment external to a vehicle via a sensor of the vehicle or a mobile device. The monitoring includes recording audio or video signals based on an output of the sensor. Audio or image recognition is performed via the mobile device based on the audio or video signals. Based on results of the audio or image recognition, objects in an area through which the vehicle is to pass are detected. The method includes determining which ones of the detected objects satisfy a predetermined criteria. The predetermined criteria includes object features that are indiscernible or marginally discernible to a vehicle operator with a perception deficiency. Selected ones of the detected objects that satisfy the predetermined criteria are monitored. The vehicle operator is alerted of the selected ones of the detected objects with an alert predetermined to be discernible to the vehicle operator.Type: GrantFiled: July 15, 2013Date of Patent: December 9, 2014Assignee: Google Inc.Inventors: Juan Vasquez, Vinson Mok
-
Patent number: 9270891Abstract: A system and method are presented for estimating the orientation of a panoramic camera mounted on a vehicle relative to the vehicle coordinate frame. An initial pose estimate of the vehicle is determined based on global positioning system data, inertial measurement unit data, and wheel odometry data of the vehicle. Image data from images captured by the camera is processed to obtain one or more tracks, each track including a sequence of matched feature points stemming from a same three-dimensional location. A correction parameter determined from the initial pose estimate and tracks can then be used to correct the orientations of the images captured by the camera. The correction parameter can be optimized by deriving a correction parameter for each of a multitude of distinct subsequences of one or more runs. Statistical analysis can be performed on the determined correction parameters to produce robust estimates.Type: GrantFiled: March 12, 2014Date of Patent: February 23, 2016Assignee: Google Inc.Inventors: Dragomir Anguelov, Daniel Joseph Filip
-
Patent number: 9594379Abstract: Methods and systems are disclosed for determining sensor degradation by actively controlling an autonomous vehicle. Determining sensor degradation may include obtaining sensor readings from a sensor of an autonomous vehicle, and determining baseline state information from the obtained sensor readings. A movement characteristic of the autonomous vehicle, such as speed or position, may then be changed. The sensor may then obtain additional sensor readings, and second state information may be determined from these additional sensor readings. Expected state information may be determined from the baseline state information and the change in the movement characteristic of the autonomous vehicle. A comparison of the expected state information and the second state information may then be performed. Based on this comparison, a determination may be made as to whether the sensor has degraded.Type: GrantFiled: February 8, 2016Date of Patent: March 14, 2017Assignee: Google Inc.Inventors: David I. Ferguson, Jiajun Zhu
-
Patent number: 9008890Abstract: An autonomous vehicle may include a stuck condition detection component and a communications component. The stuck-detection component may be configured to detect a condition in which the autonomous vehicle is impeded from navigating according to a first trajectory. The communications component may send an assistance signal to an assistance center and receive a response to the assistance signal. The assistance signal may include sensor information from the autonomous vehicle. The assistance center may include a communications component and a trajectory specification component. The communications component may receive the assistance signal and send a corresponding response. The trajectory specification component may specify a second trajectory for the autonomous vehicle and generate the corresponding response that includes a representation of the second trajectory. The second trajectory may be based on the first trajectory and may ignore an object that obstructs the first trajectory.Type: GrantFiled: March 15, 2013Date of Patent: April 14, 2015Assignee: Google Inc.Inventors: Joshua Seth Herbach, Nathaniel Fairfield, Dmitri Dolgov, Peter Colijn, Andrew Chatham
-
Patent number: 9221396Abstract: Methods and systems are disclosed for cross-validating a second sensor with a first sensor. Cross-validating the second sensor may include obtaining sensor readings from the first sensor and comparing the sensor readings from the first sensor with sensor readings obtained from the second sensor. In particular, the comparison of the sensor readings may include comparing state information about a vehicle detected by the first sensor and the second sensor. In addition, comparing the sensor readings may include obtaining a first image from the first sensor, obtaining a second image from the second sensor, and then comparing various characteristics of the images. One characteristic that may be compared are object labels applied to the vehicle detected by the first and second sensor. The first and second sensors may be different types of sensors.Type: GrantFiled: September 27, 2012Date of Patent: December 29, 2015Assignee: Google Inc.Inventors: Jiajun Zhu, Dmitri A. Dolgov, Christopher Paul Urmson
-
Patent number: 9582907Abstract: Autonomous vehicles use various computing systems to transport passengers from one location to another. A control computer sends messages to the various systems of the vehicle in order to maneuver the vehicle safely to the destination. The control computer may display information on an electronic display in order to allow the passenger to understand what actions the vehicle may be taking in the immediate future. Various icons and images may be used to provide this information to the passenger.Type: GrantFiled: August 7, 2015Date of Patent: February 28, 2017Assignee: Google Inc.Inventors: Andrew Timothy Szybalski, Luis Ricardo Prada Gomez, Philip Nemec, Christopher Paul Urmson, Sebastian Thrun
-
Patent number: 8818681Abstract: An autonomous vehicle detects a tailgating vehicle and uses various response mechanisms. For example, a vehicle is identified as a tailgater based on whether its characteristics meet a variable threshold. For example, when the autonomous vehicle is traveling at slower speeds, the threshold is defined in distance. When the autonomous vehicle is traveling at faster speeds, the threshold is defined in time. The autonomous vehicle may respond to the tailgater by modifying its driving behavior. In one example, the autonomous vehicle adjusts a headway buffer (defined in time) from another vehicle in front of the autonomous vehicle. For example, if the tailgater is T seconds too close to the autonomous vehicle, the autonomous vehicle increases the headway buffer to the vehicle in front of it by some amount relative to T.Type: GrantFiled: July 24, 2013Date of Patent: August 26, 2014Assignee: Google Inc.Inventors: Dmitri A. Dolgov, Philip Nemec, Anne Aula
-
Patent number: 8818682Abstract: An autonomous vehicle detects a tailgating vehicle and uses various response mechanisms. For example, a vehicle is identified as a tailgater based on whether its characteristics meet a variable threshold. When the autonomous vehicle is traveling at slower speeds, the threshold is defined in distance. When the autonomous vehicle is traveling at faster speeds, the threshold is defined in time. The autonomous vehicle may respond to the tailgater by modifying its driving behavior. In one example, the autonomous vehicle adjusts a headway buffer (defined in time) from another vehicle in front of the autonomous vehicle. For example, if the tailgater is T seconds too close to the autonomous vehicle, the autonomous vehicle increases the headway buffer to the vehicle in front of it by some amount relative to T.Type: GrantFiled: December 4, 2013Date of Patent: August 26, 2014Assignee: Google Inc.Inventors: Dmitri A. Dolgov, Philip Nemec, Anne Aula
-
Patent number: 8954252Abstract: Aspects of the disclosure relate generally to notifying a pedestrian of the intent of a self-driving vehicle. For example, the vehicle may include sensors which detect an object such as a pedestrian attempting or about to cross the roadway in front of the vehicle. The vehicle's computer may then determine the correct way to respond to the pedestrian. For example, the computer may determine that the vehicle should stop or slow down, yield, or stop if it is safe to do so. The vehicle may then provide a notification to the pedestrian of what the vehicle is going to or is currently doing. For example, the vehicle may include a physical signaling device, an electronic sign or lights, a speaker for providing audible notifications, etc.Type: GrantFiled: December 3, 2013Date of Patent: February 10, 2015Assignee: Google Inc.Inventors: Christopher Paul Urmson, Ian James Mahon, Dmitri A. Dolgov, Jiajun Zhu
-
Patent number: 8914212Abstract: Aspects of the disclosure relate generally to notifying a pedestrian of the intent of a self-driving vehicle. For example, the vehicle may include sensors which detect an object such as a pedestrian attempting or about to cross the roadway in front of the vehicle. The vehicle's computer may then determine the correct way to respond to the pedestrian. For example, the computer may determine that the vehicle should stop or slow down, yield, or stop if it is safe to do so. The vehicle may then provide a notification to the pedestrian of what the vehicle is going to or is currently doing. For example, the vehicle may include a physical signaling device, an electronic sign or lights, a speaker for providing audible notifications, etc.Type: GrantFiled: December 3, 2013Date of Patent: December 16, 2014Assignee: Google Inc.Inventors: Christopher Paul Urmson, Ian James Mahon, Dmitri A. Dolgov, Jiajun Zhu
-
Patent number: 9335766Abstract: A vehicle is provided that may distinguish between dynamic obstacles and static obstacles. Given a detector for a class of static obstacles or objects, the vehicle may receive sensor data indicative of an environment of the vehicle. When a possible object is detected in a single frame, a location of the object and a time of observation of the object may be compared to previous observations. Based on the object being observed a threshold number of times, in substantially the same location, and within some window of time, the vehicle may accurately detect the presence of the object and reduce any false detections.Type: GrantFiled: December 6, 2013Date of Patent: May 10, 2016Assignee: Google Inc.Inventors: David Harrison Silver, Jonathan Baldwin Dowdall, David Ian Franklin Ferguson
-
Patent number: 9558411Abstract: Aspects of the disclosure relate to classifying the status of objects. For examples, one or more computing devices detect an object from an image of a vehicle's environment. The object is associated with a location. The one or more computing devices receive data corresponding to the surfaces of objects in the vehicle's environment and identifying data within a region around the location of the object. The one or more computing devices also determine whether the data within the region corresponds to a planar surface extending away from an edge of the object. Based on this determination, the one or more computing devices classify the status of the object.Type: GrantFiled: October 1, 2014Date of Patent: January 31, 2017Assignee: Google Inc.Inventors: David Ian Franklin Ferguson, David Harrison Silver, Hyman Jack Murveit
-
Patent number: 9255805Abstract: Aspects of the present disclosure relate to using an object detected at long range to increase the accuracy of a location and heading estimate based on near range information. For example, an autonomous vehicle may use data points collected from a sensor such as a laser to generate an environmental map of environmental features. The environmental map is then compared to pre-stored map data to determine the vehicle's geographic location and heading. A second sensor, such as a laser or camera, having a longer range than the first sensor may detect an object outside of the range and field of view of the first sensor. For example, the object may have retroreflective properties which make it identifiable in a camera image or from laser data points. The location of the object is then compared to the pre-stored map data and used to refine the vehicle's estimated location and heading.Type: GrantFiled: May 19, 2015Date of Patent: February 9, 2016Assignee: Google Inc.Inventors: David I. Ferguson, David Harrison Silver
-
Patent number: 9062979Abstract: Aspects of the present disclosure relate to using an object detected at long range to increase the accuracy of a location and heading estimate based on near range information. For example, an autonomous vehicle may use data points collected from a sensor such as a laser to generate an environmental map of environmental features. The environmental map is then compared to pre-stored map data to determine the vehicle's geographic location and heading. A second sensor, such as a laser or camera, having a longer range than the first sensor may detect an object outside of the range and field of view of the first sensor. For example, the object may have retroreflective properties which make it identifiable in a camera image or from laser data points. The location of the object is then compared to the pre-stored map data and used to refine the vehicle's estimated location and heading.Type: GrantFiled: July 8, 2013Date of Patent: June 23, 2015Assignee: Google Inc.Inventors: David I. Ferguson, David Silver