Search Patents
  • Patent number: 7848603
    Abstract: A normally opaque waveguide interacting with a drop-filter cavity can be switched to a transparent state when the drop filter is also coupled to a dipole. This dipole induced transparency may be obtained even when the vacuum Rabi frequency of the dipole is much less than the cavity decay rate. The condition for transparency is a large Purcell factor. Dipole induced transparency can be used in quantum repeaters for long distance quantum communication.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: December 7, 2010
    Assignee: The Board Trustees of the Leland Stanford Junior University
    Inventors: Edo Waks, Jelena Vuckovic
  • Patent number: 7292613
    Abstract: A micropost microcavity device has a maximum field intensity at the center of a high-index spacer as well as a small mode volume. The device has an approximately half-wavelength thick low-index spacer [400] sandwiched between two quarter wave stacks [410, 420]. The low-index spacer has a high-index subspacer layer [470] positioned at its center. The subspacer layer has a thickness smaller than a quarter wavelength. As a result, the electric field intensity remains a maximum at the center of the spacer where the high-index subspacer is positioned. A quantum dot or other active region [480] may be embedded within the subspacer [470]. The microcavity devices provide, for example, single photon sources, single dot lasers, low-threshold quantum dot or quantum well lasers, or devices for strong coupling between a single quantum dot and the cavity field which can be used as components of photonic integrated circuits, quantum computers, quantum networks, or quantum cryptographic systems.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: November 6, 2007
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Japan Science and Technology
    Inventors: Jelena Vuckovic, Yoshihisa Yamamoto
  • Publication number: 20150378054
    Abstract: A photonic crystal (PC) device including one or more resonant optical structures defined by the photonic crystal structure is affixed to the end face of an optical fiber. The PC device is fabricated on a separate substrate, and then affixed to the fiber end face. This transfer can be facilitated by device templates which are laterally supported by tabs after an undercut etch. The tabs can be designed to break during transfer to the fiber, thereby facilitating transfer. Registration marks and/or the use of device templates having the same diameter as the fiber can be used to provide lateral alignment of the fiber to the resonant optical structures. Such alignment may be needed to provide optical coupling between the fiber and the resonant optical structures.
    Type: Application
    Filed: June 30, 2015
    Publication date: December 31, 2015
    Inventors: Gary Shambat, Jelena Vuckovic
  • Patent number: 9588254
    Abstract: A photonic crystal (PC) device including one or more resonant optical structures defined by the photonic crystal structure is affixed to the end face of an optical fiber. The PC device is fabricated on a separate substrate, and then affixed to the fiber end face. This transfer can be facilitated by device templates which are laterally supported by tabs after an undercut etch. The tabs can be designed to break during transfer to the fiber, thereby facilitating transfer. Registration marks and/or the use of device templates having the same diameter as the fiber can be used to provide lateral alignment of the fiber to the resonant optical structures. Such alignment may be needed to provide optical coupling between the fiber and the resonant optical structures.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gary Shambat, Jelena Vuckovic
  • Publication number: 20080101800
    Abstract: A normally opaque waveguide interacting with a drop-filter cavity can be switched to a transparent state when the drop filter is also coupled to a dipole. This dipole induced transparency may be obtained even when the vacuum Rabi frequency of the dipole is much less than the cavity decay rate. The condition for transparency is a large Purcell factor. Dipole induced transparency can be used in quantum repeaters for long distance quantum communication.
    Type: Application
    Filed: October 24, 2007
    Publication date: May 1, 2008
    Inventors: Edo Waks, Jelena Vuckovic
  • Patent number: 7206488
    Abstract: Light is processed and, in some instances, generated using an approach involving a photonic crystal resonator arrangement. According to an example embodiment, a photonic crystal resonator array includes an array of defect locations configured for controlling the group velocity of light passing through the photonic crystal resonator array. In one implementation, holes are selectively formed in a membrane, with certain periodic locations in the membrane being substantially free of holes. In other implementations, certain periodic locations as discussed above are characterized by holes having a relatively differently-shaped opening, relative to a plurality of the holes. Still other implementations involve optical delay components, lasers, sensors and other devices implemented with a photonic crystal resonator array.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: April 17, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hatice Altug, Jelena Vuckovic
  • Patent number: 7630604
    Abstract: A normally opaque waveguide interacting with a drop-filter cavity can be switched to a transparent state when the drop filter is also coupled to a dipole. This dipole induced transparency may be obtained even when the vacuum Rabi frequency of the dipole is much less than the cavity decay rate. The condition for transparency is a large Purcell factor. Dipole induced transparency can be used in quantum repeaters for long distance quantum communication.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: December 8, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Edo Waks, Jelena Vuckovic
  • Patent number: 9310352
    Abstract: An optical fiber is combined with a photonic crystal structure (PCS) that is optically coupled to the optical fiber. The fiber has an exposed fiber surface, and the PCS is affixed to the optical fiber and disposed on or in proximity to the exposed fiber surface. The PCS includes an elongate probe member configured for biological probing. The elongate probe member includes an optical resonant cavity. In an experiment, this was accomplished using an optical fiber tip with a semiconductor template attached to its side face. The semiconductor structure had a thin, needle-like tip (including a nanobeam cavity) which can be suitably inserted inside (or broken off inside) a biological cell without causing cytotoxicity.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: April 12, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gary Shambat, Jelena Vuckovic
  • Publication number: 20100135612
    Abstract: A normally opaque waveguide interacting with a drop-filter cavity can be switched to a transparent state when the drop filter is also coupled to a dipole. This dipole induced transparency may be obtained even when the vacuum Rabi frequency of the dipole is much less than the cavity decay rate. The condition for transparency is a large Purcell factor. Dipole induced transparency can be used in quantum repeaters for long distance quantum communication.
    Type: Application
    Filed: November 12, 2009
    Publication date: June 3, 2010
    Inventors: Edo Waks, Jelena Vuckovic
  • Publication number: 20140170695
    Abstract: An optical fiber is combined with a photonic crystal structure (PCS) that is optically coupled to the optical fiber. The fiber has an exposed fiber surface, and the PCS is affixed to the optical fiber and disposed on or in proximity to the exposed fiber surface. The PCS includes an elongate probe member configured for biological probing. The elongate probe member includes an optical resonant cavity. In an experiment, this was accomplished using an optical fiber tip with a semiconductor template attached to its side face. The semiconductor structure had a thin, needle-like tip (including a nanobeam cavity) which can be suitably inserted inside (or broken off inside) a biological cell without causing cytotoxicity.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 19, 2014
    Inventors: Gary Shambat, Jelena Vuckovic
  • Publication number: 20130039616
    Abstract: A photonic crystal (PC) device including one or more resonant optical structures defined by the photonic crystal structure is affixed to the end face of an optical fiber. The PC device is fabricated on a separate substrate, and then affixed to the fiber end face. This transfer can be facilitated by device templates which are laterally supported by tabs after an undercut etch. The tabs can be designed to break during transfer to the fiber, thereby facilitating transfer. Registration marks and/or the use of device templates having the same diameter as the fiber can be used to provide lateral alignment of the fiber to the resonant optical structures. Such alignment may be needed to provide optical coupling between the fiber and the resonant optical structures.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Inventors: Gary Shambat, Jelena Vuckovic
  • Publication number: 20070183471
    Abstract: A micropost microcavity device has a maximum field intensity at the center of a high-index spacer as well as a small mode volume. The device has an approximately half-wavelength thick low-index spacer [400] sandwiched between two quarter wave stacks [410, 420]. The low-index spacer has a high-index subspacer layer [470] positioned at its center. The subspacer layer has a thickness smaller than a quarter wavelength. As a result, the electric field intensity remains a maximum at the center of the spacer where the high-index subspacer is positioned. A quantum dot or other active region [480] may be embedded within the subspacer [470]. The microcavity devices provide, for example, single photon sources, single dot lasers, low-threshold quantum dot or quantum well lasers, or devices for strong coupling between a single quantum dot and the cavity field which can be used as components of photonic integrated circuits, quantum computers, quantum networks, or quantum cryptographic systems.
    Type: Application
    Filed: July 30, 2003
    Publication date: August 9, 2007
    Inventors: Jelena Vuckovic, Yoshihisa Yamamoto
  • Publication number: 20210398804
    Abstract: Silicon carbide on insulator is provided by bonding bulk silicon carbide to a substrate with an oxide-oxide fusion bond, followed by thinning the bulk silicon carbide as needed. A doping-selective etch for silicon carbide is used to improve thickness uniformity of the silicon carbide layer(s).
    Type: Application
    Filed: September 3, 2021
    Publication date: December 23, 2021
    Inventors: Daniil M. Lukin, Jelena Vuckovic
  • Patent number: 11996285
    Abstract: Silicon carbide on insulator is provided by bonding bulk silicon carbide to a substrate with an oxide-oxide fusion bond, followed by thinning the bulk silicon carbide as needed. A doping-selective etch for silicon carbide is used to improve thickness uniformity of the silicon carbide layer(s).
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: May 28, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniil M. Lukin, Jelena Vuckovic
  • Patent number: 12019268
    Abstract: A dispersion-engineered 2D optical phased array device includes optical slow light waveguides [202, 208, 218] arranged parallel to each other; waveguide bends [206, 216] optically coupling ends of adjacent waveguides of the optical slow light waveguides to form a serpentine optical configuration; wherein the optical slow light waveguides comprise first waveguides of a first waveguide type and second waveguides of a second waveguide type, wherein the first waveguides and the second waveguides are arranged adjacent to each other and alternate with each other; wherein the optical slow light waveguides comprise phased array sections forming a phased array [214], wherein first waveguides and second waveguides have dispersion slopes of opposite sign and the same group index; wherein the optical slow light waveguides comprise slow light delay waveguide sections [210] that provide a delay between adjacent waveguides.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: June 25, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dries J. F. Vercruysse, Jelena Vuckovic
  • Patent number: 11467468
    Abstract: A photonic crystal optical phased array device has a dispersion engineered slow light waveguide region; a mode coupler region capable of optically coupling an input waveguide to the dispersion engineered slow light waveguide region; and optical antenna regions integrated within the dispersion engineered slow light waveguide region. The dispersion engineered slow light waveguide region has a substantially linear dispersion relation within a predetermined operational bandwidth of the optical phased array device. The optical antenna regions are formed by an alteration of a periodic structure of the photonic crystal and are capable of radiating light out from the dispersion engineered slow light waveguide region.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: October 11, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jelena Vuckovic, Dries J. F. Vercruysse
  • Patent number: 6944384
    Abstract: The invention is directed to different methods for controlling the positions of the guided modes of the photonic crystal waveguides. Methods based on both rearrangement of the holes and changing the size of the holes are presented. We have observed and explained the appearance of acceptor-type modes and the donor-type waveguides. The ability to tune frequencies of the guided modes within a frequency bandgap is necessary in order to achieve efficient guiding of light within a waveguide (reduced lateral and vertical waveguide losses) as well as to match frequencies of eigen modes of different photonic crystal based devices in order to have good coupling between them.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: September 13, 2005
    Assignee: California Institute of Technology
    Inventors: Marko Loncar, Jelena Vuckovic, Axel Scherer
  • Patent number: 6534798
    Abstract: The emission properties of light-emitting diodes are enhanced by coupling to surface plasmons. The semiconductor emitter layer of the light-emitting diode is thinner than &lgr;/2 and is sandwiched between two metal films. A periodic pattern is defined in the top semitransparent metal layer by lithography with the result that it efficiently couples out the light emitted from the semiconductor and simultaneously enhances the spontaneous emission rate. Extraction efficiencies of up to 35% and Purcell factors of up to 4.5 are obtainable. Photoluminescence intensities of up to 46 times higher in fabricated structures compared to unprocessed wafers are obtained. The increased light emission is due to an increase in the efficiency and an increase in the pumping intensity resulting from trapping of pump photons within the microcavity.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: March 18, 2003
    Assignee: California Institute of Technology
    Inventors: Axel Scherer, Jelena Vuckovic, Marko Loncar
  • Publication number: 20230258861
    Abstract: A dispersion-engineered 2D optical phased array device includes optical slow light waveguides [202, 208, 218] arranged parallel to each other; waveguide bends [206, 216] optically coupling ends of adjacent waveguides of the optical slow light waveguides to form a serpentine optical configuration; wherein the optical slow light waveguides comprise first waveguides of a first waveguide type and second waveguides of a second waveguide type, wherein the first waveguides and the second waveguides are arranged adjacent to each other and alternate with each other; wherein the optical slow light waveguides comprise phased array sections forming a phased array [214], wherein first waveguides and second waveguides have dispersion slopes of opposite sign and the same group index; wherein the optical slow light waveguides comprise slow light delay waveguide sections [210] that provide a delay between adjacent waveguides.
    Type: Application
    Filed: July 26, 2021
    Publication date: August 17, 2023
    Inventors: Dries J. F. Vercruysse, Jelena Vuckovic
  • Patent number: 8471352
    Abstract: Electrical pumping of photonic crystal (PC) nanocavities using a lateral p-i-n junction is described. Ion implantation doping can be used to form the junction, which under forward bias pumps a gallium arsenide photonic crystal nanocavity with indium arsenide quantum dots. Efficient cavity-coupled electroluminescence is demonstrated in a first experimental device. Electrically pumped lasing is demonstrated in a second experimental device. This approach provides several significant advantages. Ease of fabrication is improved because difficult timed etch steps are not required. Any kind of PC design can be employed. Current flow can be lithographically controlled to focus current flow to the active region of the device, thereby improving efficiency, reducing resistance, improving speed, and reducing threshold. Insulating substrates can be employed, which facilitates inclusion of these devices in photonic integrated circuits.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: June 25, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Bryan Ellis, Jelena Vuckovic, Ilya Fushman
Narrow Results

Filter by US Classification