Search Patents
  • Publication number: 20020150366
    Abstract: The invention is directed to different methods for controlling the positions of the guided modes of the photonic crystal waveguides. Methods based on both rearrangement of the holes and changing the size of the holes are presented. We have observed and explained the appearance of acceptor-type modes and the donor-type waveguides. The ability to tune frequencies of the guided modes within a frequency bandgap is necessary in order to achieve efficient guiding of light within a waveguide (reduced lateral and vertical waveguide losses) as well as to match frequencies of eigen modes of different photonic crystal based devices in order to have good coupling between them.
    Type: Application
    Filed: January 10, 2002
    Publication date: October 17, 2002
    Inventors: Marko Loncar, Jelena Vuckovic, Axel Scherer
  • Patent number: 7994467
    Abstract: Aspects of the disclosure are directed to optical microcavities and emitters that are spectrally aligned in an arrangement having an array of such microcavity-emitter combinations. The spectral alignment can be selective, in that a portion of the array of microcavity-emitter combinations, or a single microcavity-emitter combination, can be individually spectrally aligned. In specific examples, light is coupled within a semiconductor device having wavelength-dependent structures and optical cavities optically couple to the wavelength-dependent structures. One of the optical cavities and a wavelength-dependent structure are spectrally aligned, independent of another of the optical cavities.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 9, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ilya Fushman, Andrei Faraon, Jelena Vuckovic, Dirk Englund
  • Patent number: 6944384
    Abstract: The invention is directed to different methods for controlling the positions of the guided modes of the photonic crystal waveguides. Methods based on both rearrangement of the holes and changing the size of the holes are presented. We have observed and explained the appearance of acceptor-type modes and the donor-type waveguides. The ability to tune frequencies of the guided modes within a frequency bandgap is necessary in order to achieve efficient guiding of light within a waveguide (reduced lateral and vertical waveguide losses) as well as to match frequencies of eigen modes of different photonic crystal based devices in order to have good coupling between them.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: September 13, 2005
    Assignee: California Institute of Technology
    Inventors: Marko Loncar, Jelena Vuckovic, Axel Scherer
  • Patent number: 7206488
    Abstract: Light is processed and, in some instances, generated using an approach involving a photonic crystal resonator arrangement. According to an example embodiment, a photonic crystal resonator array includes an array of defect locations configured for controlling the group velocity of light passing through the photonic crystal resonator array. In one implementation, holes are selectively formed in a membrane, with certain periodic locations in the membrane being substantially free of holes. In other implementations, certain periodic locations as discussed above are characterized by holes having a relatively differently-shaped opening, relative to a plurality of the holes. Still other implementations involve optical delay components, lasers, sensors and other devices implemented with a photonic crystal resonator array.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: April 17, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hatice Altug, Jelena Vuckovic
  • Patent number: 6466709
    Abstract: Optical microcavities based on two dimensional arrays of holes defined in photonic crystals are optimized for maximum Q factors and minimum mode volume. They can also be used for strong coupling between the cavity field and an atom trapped within a defect of the photonic crystals, or for tunable filters if the holes are filled with electro-optical polymers. In one embodiment the Q factor of a cavity is increased by elongation of a plurality of holes in at least one row in a predetermined direction. Modal structures of microcavities, as well as quality factors, mode volumes, symmetry properties and radiation patterns of localized defect modes as a function of the slab thickness and parameters of photonic crystal and defects are illustrated.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: October 15, 2002
    Assignee: California Institute of Technology
    Inventors: Axel Scherer, Jelena Vuckovic, Marko Longcar, Hideo Mabuchi