Abstract: Process is disclosed wherein plastic material is passed into a mold cavity; pressurizing fluid is injected into the plastic material under controlled pressure and at a controlled rate to cause the plastic material to flow out and assume the contour of the cavity, the gas pressure being maintained until the plastic material is self-supporting. The resulting article has an outer skin and a generally hollow center containing skin-connecting structural "webs".
Abstract: A process is disclosed for molding a foamed thermoplastic article characterized by a foamed core, a non-foamed exterior shell and a surface that reproducibly and faithfully replicates a predetermined portion of the inner surface of the mold in which the article is made, wherein a foamable mixture comprising molten thermoplastic material and blowing agent is introduced through a nozzle into a mold cavity defined by said inner surface of said mold and expands and is rigidified while in said mold cavity.
Abstract: Process and resulting article are disclosed wherein plastic material is passed into a mold cavity; pressurizing fluid is injected into the plastic material under controlled pressure and at a controlled rate to cause the plastic material to flow out and assume the contour of the cavity, the gas pressure being maintained until the plastic material is self-supporting. The resulting article has an outer skin and a generally hollow center containing skin-connecting structural "webs".
Abstract: A process is disclosed for the production of molded tubular structural web articles of thermoplastic material comprising the steps: passing molten plastic material into a tubular mold cavity to fill a substantial portion of said cavity; injecting a low viscosity pressurizing fluid into said material in said mold cavity; coordinating the fluid flow rate, pressure, temperature and plastic material volume so that the pressurizing fluid divides into at least two streams on entering said material without causing the low viscosity pressurizing fluid to break through said material flow front so that, when pairs of melt fronts merge, a molded tubular structural web article is formed having a solid web at each point of merger; and maintaining a positive pressure in the mold cavity after pressurizing until said tubular article is self-supporting. The resulting tubular structural web articles are also disclosed.
Abstract: A catalyst and a process are provided for oligomerizing ethylene. A heterogeneous catalyst system comprises: (1) a chelating ligand, preferably 2-diphenyl phosphino benzoic acid (DPPBA); (2) a nickel precursor, preferably nickel chloride hexahydrate (NiCl2.6H2O); (3) a catalyst activator, preferably sodium tetraphenylborate (NaBPh4); and (4) silica. A 1:1:1 molar ratio of Ni:DPPBA:BPh4 catalyst components are fixed on a silica support using low-temperature fixation. The catalyst components are dispersed in a diluent, preferably ethanol, and silica is added. The ethanol is evaporated using freeze-drying equipment to form a silica-supported catalyst system. The silica-supported catalyst is slurried in ethanol in a reactor, and ethylene is added. The reactor pressure and temperature are maintained at about 725 psig and 100° C., respectively, for about two hours.
Type:
Grant
Filed:
February 17, 1999
Date of Patent:
February 6, 2001
Assignee:
Saudi Basic Industries Corporation
Inventors:
Mohammad Akhtar Zahoor, Fahad Al-Sherehy, Olagoke Olabisi, Mohammed M. Abdillahi, Mian Rahat Saeed