Search Patents
  • Patent number: 6917431
    Abstract: A photonic crystal optical switch having a periodic dielectric structure including at least one input waveguide. First and second waveguide arms branch from the input waveguide in which the relative optical path lengths of electromagnetic radiation within the arms are controlled by stimuli. At least one output waveguide that combines the electromagnetic radiation propagating within the first and second waveguide arms.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: July 12, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Marin Soljacic, Shanhui Fan, Mihai Ibanescu, Steven G. Johnson, John D. Joannopoulos
  • Publication number: 20090059238
    Abstract: An optical sensor includes at least one optical coupler and an optical waveguide in optical communication with the at least one optical coupler. The optical waveguide is configured to receive a first optical signal from the at least one optical coupler. The first optical signal has a group velocity and a phase velocity while propagating through at least a portion of the optical waveguide, the group velocity less than the phase velocity. An interference between the first optical signal and a second optical signal is affected by perturbations to at least a portion of the optical sensor.
    Type: Application
    Filed: June 13, 2008
    Publication date: March 5, 2009
    Inventors: Matthew A. Terrel, Michel J.F. Digonnet, Shanhui Fan
  • Publication number: 20140340688
    Abstract: An optical device and a method of using an optical filter are provided. The optical device includes an optical filter and a narrowband optical source. The optical filter has a refractive index that varies along a length of the optical filter. The narrowband optical source is in optical communication with the optical filter and is configured to generate light having a wavelength at or in the vicinity of at least one of a wavelength corresponding to a local transmission maximum and a wavelength corresponding to a maximum slop of the group index spectrum of the optical filter.
    Type: Application
    Filed: May 28, 2014
    Publication date: November 20, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J.F. Digonnet, Shanhui Fan, He Wen, Matthew Terrel
  • Publication number: 20110134432
    Abstract: An optical sensor includes at least one optical coupler and an optical waveguide in optical communication with the at least one optical coupler. The optical waveguide is configured to receive a first optical signal from the at least one optical coupler. The first optical signal has a group velocity and a phase velocity while propagating through at least a portion of the optical waveguide, the group velocity less than the phase velocity. An interference between the first optical signal and a second optical signal is affected by relative movement between the optical waveguide and the at least one optical coupler.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 9, 2011
    Inventors: Matthew A. Terrel, Michel J.F. Digonnet, Shanhui Fan
  • Patent number: 8300231
    Abstract: An optical sensor includes at least one optical coupler and an optical waveguide in optical communication with the at least one optical coupler. The optical waveguide is configured to receive a first optical signal from the at least one optical coupler. The first optical signal has a group velocity and a phase velocity while propagating through at least a portion of the optical waveguide, the group velocity less than the phase velocity. An interference between the first optical signal and a second optical signal is affected by relative movement between the optical waveguide and the at least one optical coupler.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: October 30, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Matthew A. Terrel, Michel J. F. Digonnet, Shanhui Fan
  • Patent number: 7911622
    Abstract: An optical sensor includes at least one optical coupler and an optical waveguide in optical communication with the at least one optical coupler. The optical waveguide is configured to receive a first optical signal from the at least one optical coupler. The first optical signal has a group velocity and a phase velocity while propagating through at least a portion of the optical waveguide, the group velocity less than the phase velocity. An interference between the first optical signal and a second optical signal is affected by perturbations to at least a portion of the optical sensor.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: March 22, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Matthew A. Terrel, Michel J. F. Digonnet, Shanhui Fan
  • Publication number: 20120281225
    Abstract: An optical sensor, a method of configuring an optical sensor, and a method of using an optical sensor are provided. The optical sensor includes an optical waveguide having a length and a laser source optically coupled to the waveguide. The laser source has a coherence length. Light from the source is transmitted to the waveguide as a first signal propagating along the waveguide in a first direction and a second signal propagating along the waveguide in a second direction opposite to the first direction. The optical paths of the first signal and the second signal are substantially reciprocal with one another and the first signal and the second signal are combined together after propagating through the waveguide to generate a third signal. The coherence length is greater than 1 meter or is in a range between 200 microns and 10 centimeters.
    Type: Application
    Filed: June 11, 2012
    Publication date: November 8, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J.F. Digonnet, Shanhui Fan, Seth Lloyd
  • Patent number: 8797540
    Abstract: In certain embodiments, an optical device and a method of use is provided. The optical device can include a fiber Bragg grating and a narrowband optical source. The narrowband optical source can be configured to generate light. A first portion of light can be transmitted along a first optical path extending along and through the length of the fiber Bragg grating at a group velocity. The light can have a wavelength at or in the vicinity of a wavelength at which one or more of the following quantities is at a maximum value: (a) the product of the group index spectrum and a square root of the power transmission spectrum, (b) the slope of a product of the group index spectrum and one minus the power transmission spectrum, and (c) the slope of a product of the group index spectrum and the power transmission spectrum.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 5, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Shanhui Fan, He Wen, Matthew Terrel
  • Patent number: 9347826
    Abstract: An optical device, a method of configuring an optical device, and a method of using a fiber Bragg grating is provided. The optical device includes a fiber Bragg grating, a narrowband optical source, and at least one optical detector. The fiber Bragg grating has a power transmission spectrum as a function of wavelength with one or more resonance peaks, each comprising a local maximum and two non-zero-slope regions with the local maximum therebetween. The light generated by the narrowband optical source has a wavelength at a non-zero-slope region of a resonance peak that is selected such that one or more of the following quantities, evaluated at the resonance peak, is at a maximum value: (a) the product of the group delay spectrum and the power transmission spectrum and (b) the product of the group delay spectrum and one minus the power reflection spectrum.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 24, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: He Wen, Michel J. F. Digonnet, Shanhui Fan
  • Patent number: 9025157
    Abstract: An optical device, a method of configuring an optical device, and a method of using a fiber Bragg grating is provided. The optical device includes a fiber Bragg grating, a narrowband optical source, and at least one optical detector. The fiber Bragg grating has a power transmission spectrum as a function of wavelength with one or more resonance peaks, each comprising a local maximum and two non-zero-slope regions with the local maximum therebetween. The light generated by the narrowband optical source has a wavelength at a non-zero-slope region of a resonance peak that is selected such that one or more of the following quantities, evaluated at the resonance peak, is at a maximum value: (a) the product of the group delay spectrum and the power transmission spectrum and (b) the product of the group delay spectrum and one minus the power reflection spectrum.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 5, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: He Wen, Michel J. F. Digonnet, Shanhui Fan
  • Publication number: 20110001981
    Abstract: In certain embodiments, an optical device and a method of use is provided. The optical device includes a fiber Bragg grating having a substantially periodic refractive index modulation along a length of the fiber Bragg grating. The fiber Bragg grating has a power transmission spectrum with a plurality of local transmission minima, wherein each pair of neighboring local transmission minima has a local transmission maximum therebetween. The local transmission maximum has a maximum power at a transmission peak wavelength. The optical device further includes a narrowband optical source in optical communication with a first optical path and a second optical path.
    Type: Application
    Filed: June 2, 2010
    Publication date: January 6, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J.F. Digonnet, Shanhui Fan, He Wen, Matthew A. Terrel
  • Patent number: 9329089
    Abstract: In certain embodiments, an optical device and a method of use is provided. The optical device includes a fiber Bragg grating having a substantially periodic refractive index modulation along a length of the fiber Bragg grating. The fiber Bragg grating has a power transmission spectrum with a plurality of local transmission minima, wherein each pair of neighboring local transmission minima has a local transmission maximum therebetween. The local transmission maximum has a maximum power at a transmission peak wavelength. The optical device further includes a narrowband optical source in optical communication with a first optical path and a second optical path.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: May 3, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Shanhui Fan, He Wen, Matthew A. Terrel