Abstract: This disclosure relates generally to a method and a system for computing using a field programmable gate array (FPGA) neuromorphic architecture. Implementing energy efficient Artificial Intelligence (AI) applications at power constrained environment/devices is challenging due to huge energy consumption during both training and inferencing. The disclosure is a FPGA architecture based neuromorphic computing platform, the basic components include a plurality of neurons and memory. The FPGA neuromorphic architecture is parameterized, parallel and modular, thus enabling improved energy/inference and Latency-Throughput. Based on values of the plurality of features of the data set, the FPGA neuromorphic architecture is generated in a modular and parallel fashion. The output of the disclosed FPGA neuromorphic architecture is the plurality of output spikes from the neuron, which becomes the basis of inference for computing.
Abstract: This disclosure relates generally to a method and a system for computing using a field programmable gate array (FPGA) neuromorphic architecture. Implementing energy efficient Artificial Intelligence (AI) applications at power constrained environment/devices is challenging due to huge energy consumption during both training and inferencing. The disclosure is a FPGA architecture based neuromorphic computing platform, the basic components include a plurality of neurons and memory. The FPGA neuromorphic architecture is parameterized, parallel and modular, thus enabling improved energy/inference and Latency-Throughput. Based on values of the plurality of features of the data set, the FPGA neuromorphic architecture is generated in a modular and parallel fashion. The output of the disclosed FPGA neuromorphic architecture is the plurality of output spikes from the neuron, which becomes the basis of inference for computing.
Abstract: This disclosure relates to method of identifying a gesture from a plurality of gestures using a reservoir based convolutional spiking neural network. A two-dimensional spike streams is received from neuromorphic event camera as an input. The two-dimensional spike streams associated with at least one gestures from a plurality of gestures is preprocessed to obtain plurality of spike frames. The plurality of spike frames is processed by a multi layered convolutional spiking neural network to learn plurality of spatial features from the at least one gesture. A filter block is deactivated from the plurality of filter blocks corresponds to at least one gesture which are not currently being learnt. A spatio-temporal features is obtained by allowing the spike activations from CSNN layer to flow through the reservoir. The spatial feature is classified by classifier from the CSNN layer and the spatio-temporal features from the reservoir to obtain set of prioritized gestures.
Abstract: State of art techniques rely of FPGA based approaches when power efficiency is of concern. However, compared to SNN on Neuromorphic hardware, ANN on FPGA requires higher power and longer design cycles to deploy neural network on hardware accelerators. Embodiments of the present disclosure provide a method and system for energy efficient hierarchical multi-stage SNN architecture for classification and segmentation of high-resolution images. Patch-to-patch-class classification approach is used, where the image is divided into smaller patches, and classified at first stage into multiple labels based on percentage coverage of a parameter of interest, for example, cloud coverage in satellite images. The image portion corresponding to the partially covered patches is divided into further smaller size patches, classified by a binary classifier at second level of classification.
Abstract: This disclosure relates generally to action recognition and more particularly to system and method for real-time radar-based action recognition. The classical machine learning techniques used for learning and inferring human actions from radar images are compute intensive, and require volumes of training data, making them unsuitable for deployment on network edge. The disclosed system utilizes neuromorphic computing and Spiking Neural Networks (SNN) to learn human actions from radar data captured by radar sensor(s). In an embodiment, the disclosed system includes a SNN model having a data pre-processing layer, Convolutional SNN layers and a Classifier layer. The preprocessing layer receives radar data including doppler frequencies reflected from the target and determines a binarized matrix. The CSNN layers extracts features (spatial and temporal) associated with the target's actions based on the binarized matrix.
Abstract: This disclosure relates generally to action recognition and more particularly to system and method for real-time radar-based action recognition. The classical machine learning techniques used for learning and inferring human actions from radar images are compute intensive, and require volumes of training data, making them unsuitable for deployment on network edge. The disclosed system utilizes neuromorphic computing and Spiking Neural Networks (SNN) to learn human actions from radar data captured by radar sensor(s). In an embodiment, the disclosed system includes a SNN model having a data pre-processing layer, Convolutional SNN layers and a Classifier layer. The preprocessing layer receives radar data including doppler frequencies reflected from the target and determines a binarized matrix. The CSNN layers extracts features (spatial and temporal) associated with the target's actions based on the binarized matrix.