Search Patents
  • Publication number: 20130316238
    Abstract: A nanosized particle has a first phase that is a simple substance or a solid solution of element A, which is Si, Sn, Al, Pb, Sb, Bi, Ge, In or Zn, and a second phase that is a compound of element D, which is Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, Y, Zr, Nb, Mo, Ru, Rh, Ba, lanthanoid elements (not including Ce and Pm), Hf, Ta, W or Ir, and element A, or a compound of element A and element M, which is Cu, Ag, or Au. The first phase and second phase are bound via an interface, and are exposed to the outer surface. The surface of the first phase other than the interface is approximately spherical. Furthermore, a lithium ion secondary battery includes the nanosized particle as an anode active material.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 28, 2013
    Applicants: THE FURUKAWA BATTERY CO., LTD, FURUKAWA ELECTRIC CO., LTD.
    Inventors: FURUKAWA ELECTRIC CO., LTD., THE FURUKAWA BATTERY CO., LTD
  • Patent number: 6472100
    Abstract: In a nonaqueous-electrolyte battery, a positive active material contains oxyhydroxide of nickel and aluminum. The positive active material may further contain oxyhydroxide of cobalt.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: October 29, 2002
    Assignee: Japan Storage Battery Co., Ltd.
    Inventor: Junichi Maruta
  • Patent number: 7081235
    Abstract: The cathode of a primary alkaline battery is composed of electrode grade manganese dioxide containing Zr.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: July 25, 2006
    Assignee: Eveready Battery Company, Inc.
    Inventors: Frank H. Feddrix, Robert M. Estanek, Scott W. Donne
  • Patent number: 6319632
    Abstract: An active material of formula LiCu1+xPO4 (0≦x≦1) which could be used as cathode material in lithium primary and secondary batteries.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: November 20, 2001
    Assignee: Japan Storage Battery Co., Ltd.
    Inventor: Khalil Amine
  • Patent number: 10170748
    Abstract: Disclosed is an anode for a lithium battery comprising a body of carbon, such as graphitic carbon, having a layer of a Group IV element or Group IV element-containing substance disposed upon its electrolyte contacting surface. Further disclosed is an anode comprising a body of carbon having an SEI layer formed thereupon by interaction of a layer of Group IV element or Group IV element-containing substance with an electrolyte material during the initial charging of the battery.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: January 1, 2019
    Assignee: Ovonic Battery Company, Inc.
    Inventor: Kwo Young
  • Patent number: 6225005
    Abstract: In a lead-acid battery, a positive active material includes tin in an amount of from not less than 0.2% to not more than 5% based on the weight thereof. The density of the positive active material after formation is from not less than 3.75 g/cc to not more than 5.0 g/cc. When the lead-acid battery is produced by a battery container formation, a time required between the injection of an electrolyte and the beginning of battery container formation is from not less than 0.1 hours to not more than 3 hours.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: May 1, 2001
    Assignee: Japan Storage Battery Co., Ltd.
    Inventors: Masaaki Shiomi, Yuichi Okada, Tadashi Shiroya
  • Patent number: 6495288
    Abstract: In a lead-acid battery, a positive active material includes tin in an amount of from not less than 0.2% to not more than 5% based on the weight thereof. The density of the positive active material after formation is from not less than 3.75 g/cc to not more than 5.0 g/cc. When the lead-acid battery is produced by a battery container formation, a time required between the injection of an electrolyte and the beginning of battery container formation is from not less than 0.1 hours to not more than 3 hours.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: December 17, 2002
    Assignee: Japan Storage Battery Co., Ltd.
    Inventors: Masaaki Shiomi, Yuichi Okada, Tadashi Shiroya
  • Publication number: 20130149567
    Abstract: Lithium-ion battery comprising: (a) a positive electrode comprising an amorphous chalcogenide which comprises lithium ions or which can conduct lithium ions; (b) a negative electrode; (c) a separator between the positive electrode and the negative electrode, wherein the separator comprises a non-woven material composed of fibres, preferably polymer fibres; (d) a non-aqueous electrolyte.
    Type: Application
    Filed: May 17, 2011
    Publication date: June 13, 2013
    Applicant: LI-TEC BATTERY GMBH
    Inventor: Tim Schaefer
  • Patent number: 7862931
    Abstract: Provided is a lead-based alloy for a lead-acid battery, comprising not less than 0.02% and less than 0.05% by weight of calcium, not less than 0.4% and not more than 2.5% by weight of tin, not less than 0.005% and not more than 0.04% by weight of aluminum, not less than 0.002% and not more than 0.014% by weight of barium, and the balance of lead and unavoidable impurities.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: January 4, 2011
    Assignees: The Furukawa Battery Co., Ltd., Toho Zinc Co., Ltd.
    Inventors: Jun Furukawa, Yasuyuki Nehyo, Yutaka Mori, Tomohiro Hiraki
  • Patent number: 6284411
    Abstract: In a valve regulated type lead-acid battery, a positive plate includes a positive grid made of Pb—Ca alloy and a positive active material containing Sb in the range of 0.005% to 1.0% both inclusive per weight of the positive active material; wherein a density of the positive active material is not lower than 3.75 g/cc after formation.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: September 4, 2001
    Assignee: Japan Storage Battery Co., Ltd.
    Inventors: Masaaki Shiomi, Yuuichi Okada, Akiyoshi Kimura, Masaji Adachi, Ken Sawai
  • Patent number: 6399246
    Abstract: A water-soluble binder useful for preparing an electrode for either primary or secondary batteries, having either aqueous or non-aqueous electrolyte, contains polyacrylamide and at least one copolymer selected from carboxylated styrene-butadiene copolymer and styrene-acrylate copolymer. The water-dispersible binder eliminates or reduces the need for organic solvents during preparation of an electrode made of a particulate active electrode material. The binder exhibits good chemical resistance, adhesive properties, flexibility and resilience, making it well suited for use in preparing batteries having a spirally wound electrode assembly.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: June 4, 2002
    Assignee: Eveready Battery Company, Inc.
    Inventors: Mark D. Vandayburg, George E. Blomgren
  • Patent number: 9564654
    Abstract: A rechargeable lithium ion button cell battery having a sealed housing comprises an inner casing and an outer casing, both casings have at least one flat area as top or bottom of the battery, and a round or oval sidewall vertically formed to the flat area. An insulation gasket is positioned between the sidewalls, and the outer casing opening is mechanically crimped to complete the seal of the battery. Inside the sealed housing the anode and cathode electrodes are spiral wound with separator to be a round or oval roll. A roll axis is vertical to the flat area of the casings. The two electrodes are tapered in width to fully utilize the inner space. The electrodes comprise current collectors of metal foils coated with lithium-intercalating active materials, leaving small area of uncoated metal foils as conductor tabs for connecting the electrodes to the casings.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: February 7, 2017
    Assignee: Zhuhai Zhi Li Battery Co. Ltd.
    Inventors: Fang Wang, Fajiong Sun, Youqing Yang, Zui Yang, Zhen Li
  • Patent number: 6268082
    Abstract: The present invention is to provide a production method of an active material for an alkaline secondary battery comprising: a step of mixing particles comprising particles mainly containing nickel hydroxide and particles of a metal cobalt or a cobalt compound in a mixer with a sealed structure comprising a heating means in the presence of oxygen and an alkaline aqueous solution while heating. An active material produced by the method allows a high utilization. And a battery assembled with a positive electrode using the active material has an excellent high ratio discharge characteristic, and hardly causes the capacity decline even at the time of recharging after leaving in the over discharge state for a long time.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: July 31, 2001
    Assignee: Toshiba Battery Co., Ltd.
    Inventors: Masayoshi Hiruma, Naomi Bando, Kunihiko Miyamoto, Makoto Wakabayashi
  • Patent number: 6251538
    Abstract: A nickel hydroxide positive active material for an alkaline battery contains nickel hydroxide powder having a nickel valence of greater than 2; and a cobalt compound having a cobalt valence of greater than 2, which is formed on the surface of said nickel hydroxide powder. For example, the surface of nickel oxyhydroxide powder is covered by cobalt oxyhydroxide layer. This positive active material is used as a starting material to produce an electrode by retaining it in a three-dimensional porous material.
    Type: Grant
    Filed: April 28, 1999
    Date of Patent: June 26, 2001
    Assignees: Japan Storage Battery Co., Ltd., GS-Melcotec Co., Ltd.
    Inventors: Yukitaka Seyama, Hideki Sasaki, Toshio Murata
  • Patent number: 7226675
    Abstract: A very low emission hybrid electric vehicle incorporating an integrated propulsion system which includes a fuel cell, a metal hydride hydrogen storage unit, an electric motor, high specific power, high energy density nickel-metal hydride (NiMH) batteries, and preferably a regenerative braking system. The nickel-metal hydride battery module preferably has a peak power density in relation to energy density as defined by: P>1,375?15E, where P is greater than 600 Watts/kilogram, where P is the peak power density as measured in Watts/kilogram and E is the energy density as measured in Watt-hours/kilogram.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: June 5, 2007
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Robert C. Stempel
  • Patent number: 8283071
    Abstract: A lithium/iron disulfide electrochemical battery cell with a high discharge capacity. The cell has a lithium negative electrode, an iron disulfide positive electrode and a nonaqueous electrolyte. The iron disulfide of the positive electrode has a controlled average particle size range which allows the electrochemical cells to exhibit desired properties in both low and high rate applications. In various embodiments, the iron disulfide particles are wet milled, preferably utilizing a media mill or milled utilizing a non-mechanical mill such as a jet mill, which reduces the iron disulfide particles to a desired average particle size range for incorporation into the positive electrode.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: October 9, 2012
    Assignee: Eveready Battery Company, Inc.
    Inventors: Jack W Marple, Michael W Wemple
  • Publication number: 20130004852
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 6730404
    Abstract: The high rate discharge performance and cyclability are improved. A battery having a hich capacity density and excellent cyclability and safety performance can be produced. A composite active material provided with a polymer on the surface of a carbon-based active material in an amount of from 0.01% to 5% by weight is used. Further, a composite active material provided with a polymer on the surface of a carbon-based active material in an amount of from 0.04 to 4% by weight is used. In particular, the former composite active material is used as a positive active material while the latter composite active material is used as a negative active material to obtain a non-aqueous electrolyte battery.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: May 4, 2004
    Assignees: Japan Storage Battery Co., Ltd., The Kansai Electric Power Co., Ltd.
    Inventors: Isao Suzuki, Shuji Hitomi, Syozo Hashizume, Eriko Yagasaki
  • Patent number: 10797341
    Abstract: According to one embodiment, a battery module includes a battery unit. The battery unit includes a nonaqueous lithium ion battery including a nonaqueous electrolyte, and an aqueous lithium ion battery including an electrolytic solution in which an electrolyte is dissolved in an aqueous solvent. In the battery unit, the aqueous lithium ion battery is connected in parallel to the nonaqueous lithium ion battery.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: October 6, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasunobu Yamashita, Shinsuke Matsuno, Norio Takami, Hiroki Inagaki
  • Publication number: 20020001748
    Abstract: A nonaqueous secondary battery having a compound of any of the general formulae (1) to (3)
    Type: Application
    Filed: September 25, 1998
    Publication date: January 3, 2002
    Inventor: TAKAKO KAMO