Search Patents
  • Patent number: 6841754
    Abstract: A plasma arc torch that includes a torch body having a nozzle mounted relative to a composite electrode in the body to define a plasma chamber. The torch body includes a plasma flow path for directing a plasma gas to the plasma chamber in which a plasma arc is formed. The nozzle includes a hollow, body portion and a substantially solid, head portion defining an exit orifice. The composite electrode can be made of a metallic material (e.g., silver) with high thermal conductivity in the forward portion electrode body adjacent the emitting surface, and the aft portion of the electrode body is made of a second low cost, metallic material with good thermal and electrical conductivity. This composite electrode configuration produces an electrode with reduced electrode wear or pitting comparable to a silver electrode, for a price comparable to that of a copper electrode.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: January 11, 2005
    Assignee: Hypertherm, Inc.
    Inventors: David J. Cook, Kirk H. Ferland, Charles Hackett, Young Yang, Richard W. Couch, Zhipeng Lu
  • Patent number: 7659488
    Abstract: A plasma arc torch that includes a torch body having a nozzle mounted relative to a composite electrode in the body to define a plasma chamber. The torch body includes a plasma flow path for directing a plasma gas to the plasma chamber in which a plasma arc is formed. The nozzle includes a hollow, body portion and a substantially solid, head portion defining an exit orifice. The composite electrode can be made of a metallic material (e.g., silver) with high thermal conductivity in the forward portion electrode body adjacent the emitting surface, and the aft portion of the electrode body is made of a second low cost, metallic material with good thermal and electrical conductivity. This composite electrode configuration produces an electrode with reduced electrode wear or pitting comparable to a silver electrode, for a price comparable to that of a copper electrode.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: February 9, 2010
    Assignee: Hypertherm, Inc.
    Inventors: David J. Cook, Kirk H. Ferland, Charles M. Hackett, Yong Yang, Richard W. Couch, Jr., Zhipeng Lu
  • Publication number: 20040200810
    Abstract: A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps.
    Type: Application
    Filed: April 11, 2003
    Publication date: October 14, 2004
    Applicant: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Richard R. Anderson, Brian J. Currier, Jon W. Lindsay, Zheng Duan, Casey Jones, Edward M. Shipulski
  • Publication number: 20090308849
    Abstract: A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps.
    Type: Application
    Filed: August 20, 2009
    Publication date: December 17, 2009
    Applicant: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Richard R. Anderson, Brian J. Currier, Jon W. Lindsay, Zheng Duan, Casey Jones, Edward M. Shipulski
  • Patent number: 7019255
    Abstract: A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: March 28, 2006
    Assignee: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Richard R. Anderson, Brian J. Currier, Jon W. Lindsay, Zheng Duan, Casey Jones, Edward M. Shipulski
  • Patent number: 7193174
    Abstract: A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: March 20, 2007
    Assignee: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Richard R. Anderson, Brian J. Currier, Jon W. Lindsay, Zheng Duan, Casey Jones, Edward M. Shipulski
  • Patent number: 7754996
    Abstract: A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: July 13, 2010
    Assignee: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Richard R. Anderson, Brian J. Currier, Jon W. Lindsay, Zheng Duan, Casey Jones, Edward M. Shipulski
  • Patent number: 6946617
    Abstract: A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: September 20, 2005
    Assignee: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Richard R. Anderson, Brian J. Currier, Jon W. Lindsay, Zheng Duan, Casey Jones, Edward M. Shipulski
  • Publication number: 20080116179
    Abstract: A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 22, 2008
    Applicant: Hypertherm, Inc.
    Inventors: David J. Cook, Richard W. Couch, Aaron D. Brandt, Richard R. Anderson, Brian J. Currier, Jon W. Lindsay, Zheng Duan, Casey Jones, Edward M. Shipulski
  • Patent number: 8525069
    Abstract: An improved electrode for use in a plasma arc torch. The electrode includes an electrode body, a cavity in a front face at a first end of the electrode body, and an insert disposed in the cavity. The first end of the electrode body is formed of high purity copper containing at least 99.81% copper. The insert has a first end and a second end and is formed of a high emissivity material. A diameter of the first end of the insert is less than a diameter of a second end of the insert. An electrode is compressed to retain the insert using radial compression. The invention also includes a method for forming the electrode, and a method of operation of an electrode in a plasma torch.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 3, 2013
    Assignee: Hypertherm, Inc.
    Inventors: Jonathan P. Mather, Peter J. Twarog
  • Patent number: 8759709
    Abstract: An improved electrode for use in a plasma arc torch. The electrode includes an electrode body, a cavity in a front face at a first end of the electrode body, and an insert disposed in the cavity. The first end of the electrode body is formed of high purity copper containing at least 99.81% copper. The insert has a first end and a second end and is formed of a high emissivity material. A diameter of the first end of the insert is less than a diameter of a second end of the insert. An electrode is compressed to retain the insert using radial compression. The invention also includes a method for forming the electrode, and a method of operation of an electrode in a plasma torch.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: June 24, 2014
    Assignee: Hypertherm, Inc.
    Inventors: Jonathan P. Mather, Peter J. Twarog
  • Publication number: 20140021175
    Abstract: An electrode is provided for use in a plasma arc torch. The electrode includes a body having a forward portion, a middle portion and an aft portion. The forward portion includes an electrode tip comprising a conductive first material, wherein the electrode tip includes: 1) a pilot contact region for initiating a pilot arc across the nozzle and 2) an emitter. The middle portion comprises a second material and defines a proximal end for mating with the forward portion and a distal end for mating with the aft portion. The material density of the second material is at least half of the material density of the first material. The electrode also includes an electrically conductive path extending from the forward portion to the aft portion of the body.
    Type: Application
    Filed: August 9, 2012
    Publication date: January 23, 2014
    Applicant: Hypertherm, Inc.
    Inventors: Carey Chen, Nicholas Sanders
  • Publication number: 20090026180
    Abstract: A nozzle, retaining cap, or shield for a plasma arc torch that includes a surface defining a conductive contact portion for exchanging heat with an adjacent torch component. The adjacent torch component can be a retaining cap, electrode or nozzle. The surface of the nozzle, retaining cap, or shield can also at least partially define a cooling channel having a curvilinear surface. A sealant portion can be positioned between the conductive contact portion and the cooling channel. The sealant portion can form or create a fluid barrier between the cooling channel and the conductive portion.
    Type: Application
    Filed: August 7, 2008
    Publication date: January 29, 2009
    Applicant: Hypertherm, Inc.
    Inventors: Yong Yang, David Jonathan Cook
  • Publication number: 20080210669
    Abstract: A nozzle or retaining cap for a plasma arc torch that includes a surface defining a conductive contact portion for exchanging heat with an adjacent torch component. The adjacent torch component can be a retaining cap, electrode or nozzle. The surface of the nozzle or retaining cap can also at least partially define a cooling channel having a curvilinear surface. A sealant portion can be positioned between the conductive contact portion and the cooling channel. The sealant portion can form or create a fluid barrier between the cooling channel and the conductive portion.
    Type: Application
    Filed: February 8, 2008
    Publication date: September 4, 2008
    Applicant: Hypertherm, Inc.
    Inventors: Yong Yang, David Jonathan Cook, E. Michael Shipulski
  • Patent number: 8829385
    Abstract: A nozzle, retaining cap, or shield for a plasma arc torch that includes a surface defining a conductive contact portion for exchanging heat with an adjacent torch component. The adjacent torch component can be a retaining cap, electrode or nozzle. The surface of the nozzle, retaining cap, or shield can also at least partially define a cooling channel having a curvilinear surface. A sealant portion can be positioned between the conductive contact portion and the cooling channel. The sealant portion can form or create a fluid barrier between the cooling channel and the conductive portion.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 9, 2014
    Assignee: Hypertherm, Inc.
    Inventors: Yong Yang, David Jonathan Cook
  • Publication number: 20120055906
    Abstract: A nozzle for a plasma arc cutting torch includes a substantially hollow, elongated body capable of receiving an electrode. The nozzle body defines a longitudinal axis and has a length along the axis from a first end of the nozzle body to a second end of the nozzle body. The nozzle also includes a plasma exit orifice disposed at the first end of the body. The first end of the nozzle body has a width and a ratio of the length of the nozzle body to the width of the nozzle body is greater than about 3.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 8, 2012
    Applicant: Hypertherm, Inc.
    Inventors: E. Michael Shipulski, Nicholas A. Sanders, Jay L. Jason, Jonathan Mather, Peter J. Twarog
  • Patent number: 8772667
    Abstract: A nozzle or retaining cap for a plasma arc torch that includes a surface defining a conductive contact portion for exchanging heat with an adjacent torch component. The adjacent torch component can be a retaining cap, electrode or nozzle. The surface of the nozzle or retaining cap can also at least partially define a cooling channel having a curvilinear surface. A sealant portion can be positioned between the conductive contact portion and the cooling channel. The sealant portion can form or create a fluid barrier between the cooling channel and the conductive portion.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: July 8, 2014
    Assignee: Hypertherm, Inc.
    Inventors: Yong Yang, David Jonathan Cook, E. Michael Shipulski
  • Publication number: 20080217305
    Abstract: A method and apparatus for a gas-cooled plasma arc torch. Components of the torch can include an electrode, nozzle and a shield, each of which can be gas-cooled. The nozzle can be disposed relative to the electrode and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the nozzle to the cooling gas flow channel during operation of the torch. The shield can be disposed relative to the nozzle and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the shield to the cooling gas flow channel during operation of the torch.
    Type: Application
    Filed: February 15, 2008
    Publication date: September 11, 2008
    Applicant: Hypertherm, Inc.
    Inventor: Nicholas A. Sanders
  • Patent number: 8089025
    Abstract: A method and apparatus for a gas-cooled plasma arc torch. Components of the torch can include an electrode, nozzle and a shield, each of which can be gas-cooled. The nozzle can be disposed relative to the electrode and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the nozzle to the cooling gas flow channel during operation of the torch. The shield can be disposed relative to the nozzle and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the shield to the cooling gas flow channel during operation of the torch.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: January 3, 2012
    Assignee: Hypertherm, Inc.
    Inventor: Nicholas A. Sanders
  • Patent number: 11622440
    Abstract: In some aspects, electrodes can include a front portion shaped to matingly engage a nozzle of the plasma cutting system, the front portion having a first end comprising a plasma arc emitter disposed therein; and a rear portion thermally connected to a second end of the front portion, the rear portion shaped to slidingly engage with a complementary swirl ring of the plasma cutting system and including: an annular mating feature extending radially from a proximal end of the rear portion of the electrode to define a first annular width to interface with the swirl ring, the annular mating feature comprising a sealing member configured to form a dynamic seal with the swirl ring to inhibit a flow of a gas from a forward side of the annular mating feature to a rearward side of the annular mating feature.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 4, 2023
    Assignee: Hypertherm, Inc.
    Inventors: Sung Je Kim, Jesse A. Roberts, Shreyansh Patel