Search Patents
  • Publication number: 20130285602
    Abstract: An apparatus and method efficiently integrating inductive and conductive charging systems, including embodiments directed towards enabling user selection of either, or both, of conductive and inductive charging. Conductive charging and inductive charging both have, in certain contexts or when judged by different criteria, advantages over the other. Systems and methods relying on one or the other would not have as wide-spread value to a user with opportunities to access both types of charging modalities.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Troy A. Nergaard, Jeffrey Brian Straubel
  • Publication number: 20140347018
    Abstract: A method for automatically charging the battery pack of an electric vehicle in accordance with a set of location sensitive charging instructions is provided. Exemplary location sensitive charging instructions include preset charging schedules and preset charge level limits. Different charging schedules and different charge level limits may be preset for different charging stations and locations, thus allowing the user to preset the charging instructions for each of multiple locations where the user routinely charges their car. Default charging instructions are used at those charging stations and locations where a set of location sensitive charging instructions has not been preset.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Applicant: Tesla Motors, Inc.
    Inventors: Brennan Boblett, Nalinichandra Penke, Miriam Vu, Kevin Hsieh, Roy Goldman, Thorsten Hayer
  • Patent number: 8810208
    Abstract: The apparatus for charging an energy storage system (ESS) from an AC line voltage includes a boost stage for converting the AC line voltage to a first ESS charging voltage; an isolation stage, coupled to the boost stage, for converting the first ESS charging voltage to a second ESS charging voltage with the second ESS charging voltage less than the first ESS charging voltage, the isolation stage removing a common mode current between the ESS and the boost stage; a configurator, responsive to a control signal, to set a direct communication of the first ESS charging voltage to the ESS in a bypass mode and to open the direct communication of the first ESS charging voltage to the ESS in an isolation mode; and a controller, coupled to the configurator, for setting the modes responsive to a battery voltage, a peak of the AC line voltage, and a total leakage current at an input of the AC line voltage, the controller asserting the control signal to the configurator.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: August 19, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Jean-Pierre Krauer, Nicholas Robert Kalayjian, Troy A. Nergaard
  • Publication number: 20130015823
    Abstract: A method for charging a metal-air battery pack at the maximum possible rate while maintaining an ambient oxygen concentration below a preset concentration is provided, thereby minimizing the risks associated with generating oxygen during the charging cycle.
    Type: Application
    Filed: September 22, 2012
    Publication date: January 17, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston Arthur Hermann, Jeffrey Brian Straubel, David G. Beck
  • Publication number: 20130328531
    Abstract: A method for charging a metal-air battery pack at the maximum possible rate while maintaining an ambient oxygen concentration below a preset concentration is provided, thereby minimizing the risks associated with generating oxygen during the charging cycle.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston Arthur Hermann, Jeffrey Brian Straubel, David G. Beck
  • Publication number: 20120041623
    Abstract: A system and method for charging a metal-air battery pack at the maximum possible rate while maintaining an ambient oxygen concentration below a preset concentration is provided, thereby minimizing the risks associated with generating oxygen during the charging cycle.
    Type: Application
    Filed: September 22, 2010
    Publication date: February 16, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston Arthur Hermann, Jeffrey Brian Straubel, David G. Beck
  • Publication number: 20120041622
    Abstract: A system and method for charging a metal-air battery pack at the maximum possible rate while maintaining an ambient oxygen concentration below a preset concentration is provided, thereby minimizing the risks associated with generating oxygen during the charging cycle.
    Type: Application
    Filed: September 22, 2010
    Publication date: February 16, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston Arthur Hermann, Jeffrey Brian Straubel, David G. Beck
  • Patent number: 8423215
    Abstract: A system and method for charging a metal-air battery pack at the maximum possible rate while maintaining an ambient oxygen concentration below a preset concentration is provided, thereby minimizing the risks associated with generating oxygen during the charging cycle.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: April 16, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Weston Arthur Hermann, Jeffrey Brian Straubel, David G. Beck
  • Publication number: 20120019212
    Abstract: A charging method using a multiphase line voltage for charging an energy storage system (ESS) using a polyphase motor drive circuit communicated to a polyphase motor, the polyphase motor drive circuit including a plurality M of driver stages, one driver stage for each phase of the polyphase motor with each driver stage coupled across the energy storage system, the method including the steps of: (a) determining a charge mode responsive to a comparison of the multiphase line voltage to a voltage of the energy storage system, the determined charge mode including a boost mode when the voltage of the energy storage system has a first predetermined relationship to the multiphase line voltage and the determined charge mode including a boost-buck mode when the voltage of the energy storage system has a second predetermined relationship to the multiphase line voltage; (b) converting, when the charge mode includes the boost mode, the multiphase line voltage to a first charging voltage using a first set of N number of t
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: Tesla Motors, Inc.
    Inventor: Jean-Pierre Krauer
  • Patent number: 8463481
    Abstract: A dual mode battery charging system and method of use are provided for use in an electric vehicle. The system utilizes at least two user selectable, charging operational modes. In a first operational mode, a state of charge circuit powers on the engine/generator system whenever the battery state of charge falls below a first level and until the battery state of charge reaches a second level, where the second level is higher than the first level. In a second operational mode, the state of charge circuit powers on the engine/generator system whenever the battery state of charge falls below a third level and until the battery state of charge reaches the second level, where the third level is lower than both the first and second levels.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 11, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Jeffrey Brian Straubel
  • Patent number: 8493032
    Abstract: A charging method using a multiphase line voltage for charging an energy storage system (ESS) using a polyphase motor drive circuit communicated to a polyphase motor, the polyphase motor drive circuit including a plurality M of driver stages, one driver stage for each phase of the polyphase motor with each driver stage coupled across the energy storage system, the method including the steps of: (a) determining a charge mode responsive to a comparison of the multiphase line voltage to a voltage of the energy storage system, the determined charge mode including a boost mode when the voltage of the energy storage system has a first predetermined relationship to the multiphase line voltage and the determined charge mode including a boost-buck mode when the voltage of the energy storage system has a second predetermined relationship to the multiphase line voltage; (b) converting, when the charge mode includes the boost mode, the multiphase line voltage to a first charging voltage using a first set of N number of t
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: July 23, 2013
    Assignee: Tesla Motors, Inc.
    Inventor: Jean-Pierre Krauer
  • Patent number: 8428806
    Abstract: A dual mode battery charging system and method of use are provided for use in an electric vehicle. The system utilizes at least two user selectable, charging operational modes. In a first operational mode, a state of charge circuit powers on the engine/generator system whenever the battery state of charge falls below a first level and until the battery state of charge reaches a second level, where the second level is higher than the first level. In a second operational mode, the state of charge circuit powers on the engine/generator system whenever the battery state of charge falls below a third level and until the battery state of charge reaches a fourth level, where the fourth level is higher than the third level, and where both the third and fourth levels are lower than both the first and second levels.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: April 23, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Jeffrey Brian Straubel
  • Patent number: 8463480
    Abstract: A dual mode battery charging system and method of use are provided for use in an electric vehicle. The system utilizes at least two user selectable, charging operational modes. In a first operational mode, a state of charge circuit cycles an engine/generator system on/off between a first level and a second level, where the second level is higher than the first level. In a second operational mode, the state of charge circuit cycles the engine/generator system on/off between a third level and a fourth level. After the fourth state of charge has been reached once, the state of charge circuit cycles the engine/generator system on/off between a fifth level and the fourth level, where the fifth level is higher than the third level and lower than the fourth level, and where the fourth level is lower than both the first and second levels.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 11, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Jeffrey Brian Straubel
  • Patent number: 8346419
    Abstract: One embodiment includes a method that includes monitoring a battery state of charge circuit that is coupled to a vehicle battery, calculating an averaged value of the state of charge over a time period, charging the vehicle battery by powering a generator with a fuel burning engine that powered on and powered off according to one of a first operational mode and a second operational mode, wherein in the first operational mode the engine is powered on when the battery state of charge drops below a first state of charge and continues until the averaged value of the state of charge increases to a first preprogrammed value.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 1, 2013
    Assignee: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Jeffrey Brian Straubel