Search Patents
  • Publication number: 20100134073
    Abstract: A system for optimizing battery pack charging is provided. In this system, during charging the coupling of auxiliary systems (e.g., battery cooling systems) to the external power source are delayed so that the battery pack charge rate may be optimized, limited only by the available power. Once surplus power is available, for example as the requirements of the charging system decrease, the auxiliary system or systems may be coupled to the external power source without degrading the performance of the charging system.
    Type: Application
    Filed: November 5, 2009
    Publication date: June 3, 2010
    Applicant: TESLA MOTORS, INC.
    Inventor: Scott Ira Kohn
  • Publication number: 20100138092
    Abstract: A system for optimizing battery pack charging is provided. In this system, during charging the coupling of auxiliary systems (e.g., battery cooling systems) to the external power source are delayed so that the battery pack charge rate may be optimized, limited only by the available power. Once surplus power is available, for example as the requirements of the charging system decrease, the auxiliary system or systems may be coupled to the external power source without degrading the performance of the charging system.
    Type: Application
    Filed: November 5, 2009
    Publication date: June 3, 2010
    Applicant: Tesla Motors, Inc.
    Inventor: Scott Ira Kohn
  • Publication number: 20140347018
    Abstract: A method for automatically charging the battery pack of an electric vehicle in accordance with a set of location sensitive charging instructions is provided. Exemplary location sensitive charging instructions include preset charging schedules and preset charge level limits. Different charging schedules and different charge level limits may be preset for different charging stations and locations, thus allowing the user to preset the charging instructions for each of multiple locations where the user routinely charges their car. Default charging instructions are used at those charging stations and locations where a set of location sensitive charging instructions has not been preset.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Applicant: Tesla Motors, Inc.
    Inventors: Brennan Boblett, Nalinichandra Penke, Miriam Vu, Kevin Hsieh, Roy Goldman, Thorsten Hayer
  • Patent number: 8552693
    Abstract: A battery cell charging system, including a charger and a controller, for low-temperature (below about zero degrees Celsius) charging a lithium ion battery cell, the battery cell charging system includes: a circuit for charging the battery cell using an adjustable voltage charging-profile to apply a charging voltage and a charging current to the battery cell wherein the adjustable voltage charging-profile having: a non-low-temperature charging stage for charging the battery cell using a charging profile adapted for battery cell temperatures above about zero degrees Celsius; and a low-temperature charging stage with a variable low-temperature stage charging current that decreases responsive to a battery cell temperature falling below zero degrees Celsius.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: October 8, 2013
    Assignee: Tesla Motors, Inc.
    Inventor: Anil Paryani
  • Publication number: 20090140700
    Abstract: A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
    Type: Application
    Filed: January 16, 2009
    Publication date: June 4, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Martin Forest Eberhard, Jeffrey Brian Straubel, Kurt Russell Kelty, Scott Ira Kohn, Weston Arthur Hermann, Eugene Michael Berdichevsky, Andrew Gregory Simpson, Craig Bruce Carlson
  • Publication number: 20090212745
    Abstract: One embodiment of the present subject matter includes a system that includes a battery, an electric vehicle, the battery coupled to the electric vehicle to propel the electric vehicle, and a charging circuit to charge the battery. The embodiment includes a charging cost circuit to estimate a charging cost rate and to turn on the charging circuit. The embodiment also includes a timer circuit to provide a time signal to the charging cost circuit. The embodiment is configured such that the charging cost circuit is to turn on the charging circuit during a first time period in which the charging cost rate is below a first threshold until the battery reaches a first energy stored level, and to turn on the charging circuit during a second time period in which the charging cost rate is above the first threshold.
    Type: Application
    Filed: May 1, 2009
    Publication date: August 27, 2009
    Applicant: Tesla Motors, Inc.
    Inventors: Kurt Russell Kelty, Eugene Michael Berdichevsky
  • Patent number: 8643342
    Abstract: A battery cell charging system, including a charger and a controller, for rapidly charging a lithium ion battery cell, the battery cell charging system having a circuit for charging the battery cell using an adjustable voltage charging-profile to apply a charging voltage and a charging current to the battery cell wherein the adjustable voltage charging-profile includes: a first charging stage with a constant first stage charging current and an increasing battery cell voltage with the first stage charging current provided until the first stage charging voltage is about equal to a first stage complete voltage less than a maximum battery cell voltage; an intermediate ramped charging stage, the intermediate ramped charging stage including both an increasing ramped voltage and a decreasing ramped iBat current for the battery cell for the voltage charging range of the first stage complete voltage to about the maximum battery cell voltage; and a final charging stage with a constant final stage charging voltage about
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: February 4, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Vineet Haresh Mehta, Jeffrey Brian Straubel
  • Patent number: 8970182
    Abstract: A battery cell charger for rapidly charging a lithium ion battery cell (or string of series-parallel connected cells) having a maximum battery cell voltage the battery cell charging system including: a circuit for charging the battery cell using an adjustable voltage charging-profile to apply a charging voltage and a charging current to the battery cell wherein the adjustable voltage charging-profile includes: a first charging stage with a constant first stage charging current and an increasing battery cell voltage with the first stage charging current provided until the first stage charging voltage is about equal to a first stage complete voltage less than the maximum battery cell voltage; one or more intermediate charging stages, each intermediate stage selected from the group consisting of one or more of an intermediate constant voltage stage that provides a decreasing charging current, an intermediate constant current stage that produces an increasing battery cell voltage, and combinations thereof; and a
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: March 3, 2015
    Assignee: Tesla Motors, Inc.
    Inventors: Anil Paryani, Clay H. Kishiyama, Scott I. Kohn, Vineet H. Mehta
  • Publication number: 20110298417
    Abstract: An apparatus and method for identifying a presence of a short circuit in a battery pack. A fault-detection apparatus for a charging system that rapidly charges a collection of interconnected lithium ion battery cells, the safety system includes a data-acquisition system for receiving a set of data parameters from the collection while the charging system is actively charging the collection; a monitoring system evaluating the set of data parameters to identify a set of anomalous conditions; and a controller comparing the set of anomalous conditions against a set of predetermined profiles indicative of an internal short in one or more cells of the collection, the controller establishing an internal-short state for the collection when the comparing has a predetermined relationship to the set of predetermined profiles.
    Type: Application
    Filed: December 16, 2010
    Publication date: December 8, 2011
    Applicant: Tesla Motors, Inc.
    Inventors: Sarah G. Stewart, Christopher Dangler, Clay H. Kishiyama, Weston A. Hermann, Scott I. Kohn, Kurt R. Kelty
  • Patent number: 8754614
    Abstract: A battery cell charger for rapidly charging a lithium ion battery cell (or string of series-parallel connected cells) having a maximum battery cell voltage the battery cell charging system including: a circuit for charging the battery cell using an adjustable voltage charging-profile to apply a charging voltage and a charging current to the battery cell wherein the adjustable voltage charging-profile includes: a first charging stage with a constant first stage charging current and an increasing battery cell voltage with the first stage charging current provided until the first stage charging voltage is about equal to a first stage complete voltage less than the maximum battery cell voltage; one or more intermediate charging stages, each intermediate stage selected from the group consisting of one or more of an intermediate constant voltage stage that provides a decreasing charging current, an intermediate constant current stage that produces an increasing battery cell voltage, and combinations thereof; and a
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: June 17, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Anil Paryani, Clay H. Kishiyama, Scott I. Kohn, Vineet H. Mehta
  • Publication number: 20130015823
    Abstract: A method for charging a metal-air battery pack at the maximum possible rate while maintaining an ambient oxygen concentration below a preset concentration is provided, thereby minimizing the risks associated with generating oxygen during the charging cycle.
    Type: Application
    Filed: September 22, 2012
    Publication date: January 17, 2013
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston Arthur Hermann, Jeffrey Brian Straubel, David G. Beck
  • Publication number: 20130307491
    Abstract: A charging method using a multiphase line voltage for charging an energy storage system (ESS) using a polyphase motor drive circuit communicated to a polyphase motor, the polyphase motor drive circuit including a plurality M of driver stages, one driver stage for each phase of the polyphase motor with each driver stage coupled across the energy storage system.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 21, 2013
    Applicant: Tesla Motors, Inc.
    Inventor: Jean-Pierre Krauer
  • Publication number: 20110254512
    Abstract: A voltage converter for charging an energy storage module from an alternating current line voltage, includes a first charging stage, coupled to the energy storage module, converting the line voltage to a first rectified direct current module charging voltage communicated to the energy storage module, the first rectified direct current module charging voltage greater than the line voltage, the first charging stage including an inductance for communicating a first charging current to the energy storage module; a second charging stage, switchably coupled serially with the first charging stage, down-converting the alternating current line voltage to a second rectified direct current module voltage, the second rectified direct current module voltage less than the first rectified direct current module charging voltage, wherein the second charging stage produces a second charging current not greater than the first charging current; and a controller for selectably switching the second charging stage serially with the
    Type: Application
    Filed: April 19, 2010
    Publication date: October 20, 2011
    Applicant: Tesla Motors, Inc.
    Inventor: Troy A. Nergaard
  • Publication number: 20110077879
    Abstract: A method and apparatus for measuring battery cell DC impedance by controlling charging of the battery cell. The method includes real-time characterization of a battery, (a) measuring periodically a DC impedance of the battery to determine a measured DC impedance; (b) ratioing the measured DC impedance to a reference DC impedance for the battery to establish an impedance degradation factor; (c) obtaining, during use of the battery and responsive to a set of attributes of the battery, an operational reference impedance for the battery; and (d) applying the impedance degradation factor to the operational reference impedance to obtain a real-time effective impedance for the battery.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: Tesla Motors, Inc.
    Inventor: Anil Paryani
  • Publication number: 20120105015
    Abstract: An overcharge protection device (OPD) is provided that may be used alone, or in combination with conventional charging protection systems, to protect a battery pack from the occurrence of a potentially damaging overcharging event. The OPD is designed to be coupled to, and interposed between, the terminals of the battery pack. During normal system operation, the OPD has no effect on the operation of the charging system or the battery pack. During an overcharging event, if overcharging is not prevented by another conventional system, the OPD of the invention creates a short across the terminals of the battery pack causing a battery pack fuse designed to provide battery pack short circuit protection to blow, thereby interrupting the current path from the charger to the battery pack and preventing the battery pack from being overcharged.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Philip David Cole, Nicholas Robert Kalayjian
  • Patent number: 8659270
    Abstract: An overcharge protection device (OPD) is provided that may be used alone, or in combination with conventional charging protection systems, to protect a battery pack from the occurrence of a potentially damaging overcharging event. The OPD is designed to be coupled to, and interposed between, the terminals of the battery pack. During normal system operation, the OPD has no effect on the operation of the charging system or the battery pack. During an overcharging event, if overcharging is not prevented by another conventional system, the OPD of the invention creates a short across the terminals of the battery pack causing a battery pack fuse designed to provide battery pack short circuit protection to blow, thereby interrupting the current path from the charger to the battery pack and preventing the battery pack from being overcharged.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: February 25, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Weston Arthur Hermann, Scott Ira Kohn, Philip David Cole, Nicholas Robert Kalayjian
  • Publication number: 20120098501
    Abstract: An apparatus and method for improving use efficiencies of lead-acid batteries, and more particularly to 12V external lead-acid batteries used in vehicles of all types, load-leveling installations, and backup power applications. A method includes the steps of: a) determining a state of charge (SOC) for a lead-acid battery; b) comparing the SOC against a predetermined charge zone, the charge zone having an upper bound no more than about 90% maximum charge and more preferably no more than about 85% maximum charge and the charge zone having a lower bound no less than about 70% maximum charge and more preferably no less than about 75% maximum charge; and c) maintaining a charge of the lead-acid battery wherein the SOC is within the charge zone.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 26, 2012
    Applicant: Tesla Motors, Inc.
    Inventor: Anil Paryani