Search Patents
  • Publication number: 20120176173
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. We present a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Application
    Filed: June 30, 2011
    Publication date: July 12, 2012
    Applicants: STMICROELECTRONICS SA, STMicroelectronics Pvt Ltd.
    Inventors: Chittoor PARTHASARATHY, Nitin Chawla, Kallol Chatterjee, Pascal Urard
  • Publication number: 20140035644
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. This application presents a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Application
    Filed: October 3, 2013
    Publication date: February 6, 2014
    Applicants: STMicroelectronics SA, STMicroelectronics International N.V.
    Inventors: Chittoor PARTHASARATHY, Nitin CHAWLA, Kallol CHATTERJEE, Pascal URARD
  • Patent number: 8994416
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. This application presents a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 31, 2015
    Assignees: STMicroelectronics International N.V., STMicroelectronics SA
    Inventors: Chittoor Parthasarathy, Nitin Chawla, Kallol Chatterjee, Pascal Urard