Search Patents
  • Patent number: 5729364
    Abstract: Ionic and impurity concentrations in a photorefractive holographic storage medium are optimized such that electronic and ionic Debye numbers match an expected grating wave number K, at fixing and recording temperatures, respectively. Simultaneous and sequential recording and fixing are evaluated. The photovoltaic effect is reduced, subject to response time and absorption constraints, by matching reduced and oxidized impurity concentrations.
    Type: Grant
    Filed: July 5, 1996
    Date of Patent: March 17, 1998
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Matthew C. Bashaw, John F. Heanue, Lambertus Hesselink
  • Patent number: 5844700
    Abstract: Partially overlapping holograms are stored in a cylindrical volume holographic storage medium capable of rotation about and translation along its longitudinal axis. The reference and signal beams are mutually perpendicular, and each is perpendicular to the longitudinal axis. An index-matched housing encloses the medium laterally. An optional helically-varying optical axis (c-axis) orientation allows recording at constant angular intervals over a full revolution. Signals from stored pages are used to dynamically adjust the positioning of the medium relative to the light beams as the medium continuously spins at high velocity, and to control the access of the signal beam to the readout camera.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: December 1, 1998
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Muthuveerappan Jeganathan, Matthew C. Bashaw, Lambertus Hesselink
  • Patent number: 5940514
    Abstract: An encryption method and apparatus for holographic data storage are disclosed. In a system using orthogonal phase-code multiplexing, data is encrypted by modulating the reference beam using an encryption key K represented by a unitary operator. In practice, the encryption key K corresponds to a diffuser or other phase-modulating element placed in the reference beam path, or to shuffling the correspondence between the codes of an orthogonal phase function and the corresponding pixels of a phase spatial light modulator. Because of the lack of Bragg selectivity in the vertical direction, the phase functions used for phase-code multiplexing are preferably one dimensional. Such phase functions can be one-dimensional Walsh functions. The encryption method preserves the orthogonality of reference beams, and thus does not lead to a degradation in crosstalk performance.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: August 17, 1999
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: John F. Heanue, Matthew C. Bashaw, Lambertus Hesselink
  • Patent number: 5684612
    Abstract: A hologram with a dynamically controlled diffraction efficiency and enhanced signal-to-noise ratio is recorded in ferroelectric photorefractive materials, such as strontium barium niobate (Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6) (SBN), BSTN, SCNN, PBN, BSKNN, BaTiO.sub.3, LiNbO.sub.3, KNbO.sub.3, KTN, PLZT and the tungsten bronze family. The diffraction efficiency of the hologram is dynamically controlled by applying an electric field along the polar axis of the ferroelectric photorefractive recording medium. Electrically controlled diffraction is used in conjunction with hologram fixing and operation of the material at a temperature in the vicinity of or above its Curie temperature to additionally provide prolonged, low-noise readout. The general methods for recording and reconstructing a hologram (or a set of multiplexed holograms) using these techniques is disclosed.
    Type: Grant
    Filed: September 15, 1995
    Date of Patent: November 4, 1997
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Jeffrey P. Wilde, Lambertus Hesselink
  • Patent number: 5665493
    Abstract: Rare earth doped ferroelectric materials are disclosed as reversible holographic recording medium (25) for use in two-photon recording systems. Such rare earth elements provide long-lived electronic states intermediate the ferroelectric material's valence and conduction bands. In some cases, these rare earth intermediate states have a sufficiently long life that low-power continuous wave ("cw") lasers (1) can be used to record interference patterns on them. Thus, two-photon holographic recording systems are also disclosed which do not require high-power, short pulse length, mode-locked or Q-switched lasers. Rather, the disclosed holographic recording systems employ cw lasers such as diode lasers. The rare earth dopants include praseodymium, neodymium, dysprosium, holmium, erbium, and thulium. These dopants provide ions having 4f excited states that give rise to absorptions in the near infra-red and visible spectral regions and typically have lifetimes on the order of 0.1 to 1 milliseconds.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: September 9, 1997
    Assignee: SRI International
    Inventors: Yu Sheng Bai, Ravinder Kachru, Lambertus Hesselink, Roger M. Macfarlane