Patents Represented by Attorney Arthur J. Behiel
  • Patent number: 6504405
    Abstract: A differential amplifier with reduced noise sensitivity enables the bus to operate more efficiently at higher data rates. The amplifier includes an input stage with a pair of adjustable resistive loads that alter the gain of the input stage. A differential output stage receives the output of the input stage and produces a pair of complementary output signals. These output signals are fed back to the adjustable resistive loads so that the gain of the input stage depends upon the levels of the output signals. The feedback is positive, so the voltage transfer characteristic of the inventive amplifier has different input thresholds for positive- and negative-going voltage signals.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: January 7, 2003
    Assignee: Rambus Inc.
    Inventors: Huy M. Nguyen, Benedict C. Lau
  • Patent number: 6478157
    Abstract: A bag for storing and dispensing cord includes a sidewall formed from a pliable sheet of material. The sidewall defines an interior compartment having a central portion defined between two ends. In one embodiment, a resilient ring having sufficient stiffness to maintain the interior compartment in an at least partially uncollapsed shape when the bag lays on its side supports the central portion of the interior compartment. A cord is stored within the interior compartment with one end of the cord protruding through an aperture in the closed end and the other end of the cord protruding from the open end of the compartment. In one embodiment, an end cover attached to the sidewall forms the closed end of the bag.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: November 12, 2002
    Assignee: Liberty Tool, LLC
    Inventors: Jerome M. Witt, Benjamin R. Groeser, Morse L. Roberts
  • Patent number: 6466520
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. A phase discriminator samples the output of the oscillator and accumulates data representing the signal propagation delay of either rising or falling signal transitions propagating through the test circuit. The worst-case delay associated with the test circuit can then be expressed as the longer of the two. Knowing the precise worst-case delay allows IC designers to minimize the guard band and consequently guarantee higher speed performance.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: October 15, 2002
    Assignee: Xilinx, Inc.
    Inventors: Gil A. Speyer, David L. Ferguson, Daniel Y. Chung, Robert D. Patrie, Robert W. Wells, Robert O. Conn
  • Patent number: 6465305
    Abstract: Described are mask-alignment detection structures that measure both the direction and extent of misalignment between layers of an integrated circuit. Each structure includes one or more MOS transistors, each of which exhibits a threshold voltage that varies with misalignment in one dimension. The test structures are configured in mirrored pairs, so that misalignment in one direction oppositely affects the threshold voltages of the paired structures. The threshold voltages of the paired structures can therefore be compared to determine the extent and direction of misalignment. Measurements in accordance with the invention are relatively insensitive to process variations, and the structures using to take these measurements can be formed along with other features on an integrated circuit using standard processes. One embodiment of the invention may be used to measure misalignment between active implants and the windows in which active regions are formed.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: October 15, 2002
    Assignee: Xilinx, Inc.
    Inventors: Kevin T. Look, Shih-Cheng Hsueh
  • Patent number: 6452459
    Abstract: A circuit measures a signal propagation delay through a series of memory cells on a programmable logic device. In one embodiment, a number of RAM cells are configured in series. Each RAM cell is initialized to store a logic zero. The first RAM cell is then clocked so that the output of the RAM cell rises to a logic one. The resulting rising edge from the output of the RAM cell then clocks the second RAM cell, which in turn clocks the next RAM cell in the series. The time required for a rising edge to traverse the entire sequence of latches is the cumulative time required for the output of each RAM cell to change in response to a clock edge. Consequently, the delay through the series of RAM cells provides a measure of the time required for one of the RAM cells to store data in response to a clock edge.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: September 17, 2002
    Assignee: Xilinx, Inc.
    Inventors: Siuki Chan, Christopher H. Kingsley
  • Patent number: 6436726
    Abstract: Mask-alignment detection structures that measure both the direction and extent of misalignment between layers of an integrated circuit using resistive elements for which resistance varies with misalignment in one dimension. Measurements in accordance with the invention are relatively insensitive to process variations, and the structures using to take these measurements can be formed along with other features on an integrated circuit using standard processes. One embodiment of the invention may be used to measure misalignment between two conductive layers. Other embodiments measure misalignment between diffusion regions and conductors and between diffusion regions and windows through which other diffusion regions are to be formed. A circuit in accordance with one embodiment includes row and column decoders for independently selecting mask-alignment detection structures to reduce the number of test terminals required to implement the detection structures.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: August 20, 2002
    Assignee: Xilinx, Inc.
    Inventors: Kevin T. Look, Shih-Cheng Hsueh
  • Patent number: 6437597
    Abstract: A test configuration for a programmable logic device (PLD) measures and stores the relative signal-propagation delays of a pair of signal paths extending into the PLD from PLD input pins. The PLD is configured to instantiate a ring oscillator that selectively includes either signal path in the ring. The oscillator exhibits a first oscillation period when the oscillator includes the first signal path, and exhibits a second oscillation period when the oscillator includes the second signal path. The difference between the first and second periods provides a measure of the difference between the signal propagation delays of the two paths of interest.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: August 20, 2002
    Assignee: Xilinx, Inc.
    Inventor: Siuki Chan
  • Patent number: 6426534
    Abstract: Described are mask-alignment detection structures that measure both the direction and extent of misalignment between layers of an integrated circuit. Each structure includes one or more MOS transistors, each of which exhibits a threshold voltage that varies with misalignment in one dimension. The test structures are configured in mirrored pairs, so that misalignment in one direction oppositely affects the threshold voltages of the paired structures. The threshold voltages of the paired structures can therefore be compared to determine the extent and direction of misalignment. Measurements in accordance with the invention are relatively insensitive to process variations, and the structures using to take these measurements can be formed along with other features on an integrated circuit using standard processes. One embodiment of the invention may be used to measure misalignment between active implants and the windows in which active regions are formed.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: July 30, 2002
    Assignee: Xilinx, Inc.
    Inventors: Kevin T. Look, Shih-Cheng Hsueh
  • Patent number: 6393714
    Abstract: Described are mask-alignment detection structures that measure both the direction and extent of misalignment between layers of an integrated circuit using resistive elements for which resistance varies with misalignment in one dimension. Measurements in accordance with the invention are relatively insensitive to process variations, and the structures using to take these measurements can be formed along with other features on an integrated circuit using standard processes. One embodiment of the invention may be used to measure misalignment between two conductive layers. Other embodiments measure misalignment between diffusion regions and conductors and between diffusion regions and windows through which other diffusion regions are to be formed. A circuit in accordance with one embodiment includes row and column decoders for independently selecting mask-alignment detection structures to reduce the number of test terminals required to implement the detection structures.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: May 28, 2002
    Assignee: Xilinx, Inc.
    Inventors: Kevin T. Look, Shih-Cheng Hsueh
  • Patent number: 6384637
    Abstract: A differential amplifier with reduced noise sensitivity enables the bus to operate more efficiently at higher data rates. The amplifier includes an input stage with a pair of adjustable resistive loads that alter the gain of the input stage. A differential output stage receives the output of the input stage and produces a pair of complementary output signals. These output signals are fed back to the adjustable resistive loads so that the gain of the input stage depends upon the levels of the output signals. The feedback is positive, so the voltage transfer characteristic of the inventive amplifier has different input thresholds for positive- and negative-going voltage signals.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: May 7, 2002
    Assignee: Rambus
    Inventors: Huy M. Nguyen, Benedict C. Lau
  • Patent number: 6366128
    Abstract: Described are systems for producing differential logic signals. These systems can be adapted for use with different loads by programming one or more programmable elements. One embodiment includes a series of driver stages, the outputs of which are connected to one another. The driver stages turn on successively to provide increasingly powerful differential amplification. This progressive increase in amplification produces a corresponding progressive decrease in output resistance, which reduces the noise associated with signal reflection. The systems can be incorporated into programmable IOBs to enable PLDs to provide differential output signals.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: April 2, 2002
    Assignee: Xilinx, Inc.
    Inventors: Atul V. Ghia, Suresh M. Menon, David P. Schultz
  • Patent number: 6356514
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. These signal transitions are counted over a predetermined time period to establish the period of the oscillator. The period of the oscillator is then related to the average signal propagation delay through the test circuit. The invention can be applied to synchronous components that might fail to oscillate by connecting the asynchronous set or clear terminal to the output terminal so that the oscillator oscillates at a frequency determined by the clock-to-out delay of those components.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: March 12, 2002
    Assignee: Xilinx, Inc.
    Inventors: Robert W. Wells, Robert D. Patrie, Robert O. Conn
  • Patent number: 6353334
    Abstract: Described are a system and method for converting a typical two-level logic signal to a pair of differential logic signals. In accordance with one embodiment, a field programmable gate array (FPGA) is configured to provide a digital signal and its complement on a pair of output terminals. A resistor network connected to these output terminals converts the complementary signals to a pair of differential signals having current and voltage levels within the range established by the LVDS specification. For maximum efficiency, the values of the resistors that make up the resistor network can be selected to match the 100 ohm input resistance exhibited by LVDS receivers.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: March 5, 2002
    Assignee: Xilinx, Inc.
    Inventors: David P. Schultz, Brian Von Herzen, Jon A. Brunetti
  • Patent number: 6351143
    Abstract: Described are systems and methods that take advantage of the run-time reconfigurability of modern programmable logic devices to efficiently implement content-addressable memory (CAM) circuits. Rather than using configurable logic to compare CAM entries stored in flip-flops, a CAM in accordance with the invention uses configurable logic for both data storage and comparison. A CAM in accordance with one embodiment of the invention includes a number of programmable look-up tables on a programmable logic device collectively configured to produce a “match” signal in response to data provided on a series of data input terminals. Configuration data determines the particular pattern to which the CAM responds, so new CAM entries are introduced by configuring (or reconfiguring) one or more of the look-up tables.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: February 26, 2002
    Assignee: Xilinx, Inc.
    Inventors: Steven A. Guccione, Delon Levi, Daniel J. Downs
  • Patent number: 6331117
    Abstract: A rotatable electrical connector has a pair of wiring boards. Each wiring board supports two (or more) concentric conductors that have substantially smooth coplanar surfaces. The coplanar surfaces of the concentric conductors on each wiring board define a contact plane. To provide electrical contact between the two wiring boards, each wiring board is positioned perpendicular to an axis of rotation and is supported so that the respective contact planes of the first and second wiring boards are parallel. A resilient member, such as a spring, urges the wiring boards together to establish electrical contact between the respective surfaces of corresponding conductors on the two wiring boards. The above-described wiring boards are included in a circuit module that also includes a printed circuit board, or other electrical component, sandwiched between a pair of the wiring boards.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: December 18, 2001
    Inventor: Gary L. Brundage
  • Patent number: 6305095
    Abstract: Described are mask-alignment detection structures that measure both the direction and extent of misalignment between layers of an integrated circuit using resistive elements for which resistance varies with misalignment in one dimension. Measurements in accordance with the invention are relatively insensitive to process variations, and the structures using to take these measurements can be formed along with other features on an integrated circuit using standard processes. One embodiment of the invention may be used to measure misalignment between two conductive layers. Other embodiments measure misalignment between diffusion regions and conductors and between diffusion regions and windows through which other diffusion regions are to be formed. A circuit in accordance with one embodiment includes row and column decoders for independently selecting mask-alignment detection structures to reduce the number of test terminals required to implement the detection structures.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: October 23, 2001
    Assignee: Xilinx, Inc.
    Inventors: Kevin T. Look, Shih-Cheng Hsueh
  • Patent number: 6292019
    Abstract: A programmable logic device (PLD) includes at least one function generator capable of implementing any arbitrarily defined Boolean function of input signals. The PLD includes a dynamically controlled multiplexer (MUX) on each function-generator input terminal. The inputs of each MUX can be routed to the corresponding function-generator input terminal by providing an appropriate select signal on one or more control lines. One embodiment of the PLD includes a programmable look-up table (LUT) that permits routing software to determine the correspondence between the MUX input terminals and a user-defined selection code on the MUX select lines. In one embodiment, the correspondence between the NUX input terminals and the selection code is established by configuring a number of programmable memory cells in the LUT. Another embodiment enhances programming flexibility with an additional MUX connected between the control lines and the LUT.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: September 18, 2001
    Assignee: Xilinx Inc.
    Inventors: Bernard J. New, Richard A. Carberry
  • Patent number: 6292020
    Abstract: Described are programmable routing resources capable of distributing low-skew signals along more than one edge of a programmable logic device (PLD). The PLD includes groups of input/output blocks (IOBs) arranged along each edge. A programmable signal-distribution tree can be configured to send a shared, low-skew signal to IOBs along adjacent edges. These signals are conveyed via perpendicular conductive lines that run parallel to the respective edges. Each conductive line can be programmably connected to a source of the shared signal using a respective programmable-interconnect point located near the corner of the PLD defined by the two edges.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: September 18, 2001
    Assignee: Xilinx, Inc.
    Inventor: Eric J. Crabill
  • Patent number: 6278289
    Abstract: Described are systems and methods that take advantage of the run-time reconfigurability of modern programmable logic devices to efficiently implement content-addressable memory (CAM) circuits. Rather than using configurable logic to compare CAM entries stored in flip-flops, a CAM in accordance with the invention uses configurable logic for both data storage and comparison. A CAM in accordance with one embodiment of the invention includes a number of programmable look-up tables on a programmable logic device collectively configured to produce a “match” signal in response to data provided on a series of data input terminals. Configuration data determines the particular pattern to which the CAM responds, so new CAM entries are introduced by configuring (or reconfiguring) one or more of the look-up tables.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: August 21, 2001
    Assignee: Xilinx, Inc.
    Inventors: Steven A. Guccione, Delon Levi, Daniel J. Downs
  • Patent number: 6268639
    Abstract: An ESD protection circuit includes a bipolar transistor, a resistor, and a zener diode formed on and within a semiconductor substrate. The resistor extends between the base and emitter regions of the transistor so that voltage developed across the resistor can turn on the transistor. The zener diode is formed in series with the resistor and extends between the base and collector regions of the transistor. Thus configured, breakdown current through the zener diode, typically in response to an ESD event, turns on the transistor to provide a nondestructive discharge path for the ESD. The zener diode includes anode and cathode diffusions. The cathode diffusion extends down into the semiconductor substrate in a direction perpendicular to the substrate. The anode diffusion extends down through the cathode diffusion into the semiconductor substrate. The anode diffusion extends down further than the cathode diffusion so that the zener diode is arranged vertically with respect to the substrate.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: July 31, 2001
    Assignee: Xilinx, Inc.
    Inventors: Sheau-Suey Li, Shahin Toutounchi, Michael J. Hart, Xin X. Wu, Daniel Gitlin