Patents Represented by Attorney C. Keith Montgomery
  • Patent number: 7787823
    Abstract: A radio-over-fiber (RoF) optical fiber cable system with transponder diversity for a RoF wireless picocellular system that includes at least one optical fiber cable. The at least one optical fiber cable supports one or more groups of two or more transponders, wherein the transponders in a given group are arranged to form substantially co-located picocells. The transponders in each transponder group may also have one of two orthogonal antenna polarizations. A diversity combiner optically coupled to each transponder determines respective signal strengths from each transponder in each transponder group. The transponder with the greatest signal strength in a given transponder group is selected to form the picocell for the given group. This allows for the optical fiber cable system to adjust to changes in the signal strength of each picocell, such as caused by a transponder obstruction or failure.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: August 31, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Jacob George, Michael Sauer
  • Patent number: 7773843
    Abstract: Bi-directional tap assemblies for two-way fiber topologies are disclosed. The assembly includes a fiber-optic cable having a cable optical fiber adapted to carry bi-directional optical signals and that is preterminated at a mid-span location to form at least one first cable fiber end and at least one second cable fiber end. First and second tether fibers are respectively spliced to the first and second cable fiber ends. In one version of the assembly, the tether fibers are contained in respective first and second tether covers to form first and second tethers that extend in opposite directions from the tap point. In another version of the assembly, the tether fibers are bend-insensitive fibers and are contained in a single tether cover to form a single tether. The tether fibers bend back on themselves within the tether cover and terminate at a common end of the tether, thereby allowing both downstream and upstream optical signals to be accessed at the tether end.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: August 10, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph Todd Cody, Michael Paul Kunigonis, Jr., Christopher Paul Lewallen, James Phillip Luther
  • Patent number: 7756382
    Abstract: An optical fiber splitter has a higher density fiber optic array that allows for smaller packaging. The optical fibers that extend from the optical fiber splitter have one end connectorized and their spacing at the other end reduced, thereby eliminating components that were heretofore required. A method of making the fiber optic array includes interleaving the optical fibers to reduce the overall dimensions of the fiber optic array and the fiber optic splitter. A tool is used to reduce the spacing of the optical fibers in the fiber optic array.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: July 13, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Costas Saravanos, Elli Makrides-Saravanos, Otto I. Szentesi, William J. Miller
  • Patent number: 7751666
    Abstract: An optical tube assembly having at least one optical waveguide, at least one dry insert, and a tube. The at least one optical waveguide is disposed within the tube and generally surrounds the at least one optical waveguide. In one embodiment, the dry insert has a first layer comprising a felt having at least one type of non-continuous filament. The dry insert may also include a plurality of water-swellable filaments. In another embodiment, a dry insert has a first layer, a second layer, and a plurality of water-swellable filaments. The first and second layers are attached together at least along the longitudinal edges thereof, thereby forming at least one compartment between the first and second layers and the plurality of water-swellable filaments are generally disposed in the at least one compartment. The dry insert also is advantageous in tubeless cable designs.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: July 6, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Alan T. Parsons, Jody L. Greenwood, Kenneth D. Temple, Jr., Jason C. Lail
  • Patent number: 7747117
    Abstract: An optical tube assembly having at least one optical waveguide, at least one dry insert, and a tube. In one embodiment, the dry insert has a first layer and a second layer. The first layer is a polyurethane foam and the second layer is a water-swellable layer, wherein the dry insert is disposed within the tube and generally surrounds the at least one optical waveguide.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: June 29, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Jody L. Greenwood, Douglas S. Hedrick, Jason C. Lail, W. Welch McCollough, Kenneth D. Temple, Jr.
  • Patent number: 7702203
    Abstract: Armored fiber optic assemblies are disclosed that include a dielectric armor along with methods for manufacturing the same. The dielectric armor has an armor profile, thereby resembling conventional metal armored cable to the craft. The dielectric armor provides additional crush and impact resistance and the like for the optical fibers and/or fiber optic assembly therein. The dielectric armor is advantageous to the craft since it provides the desired mechanical performance without requiring the time and expense of grounding like conventional metal armored cables. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: April 20, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Gregory B. Bohler, Julian L. Greenwood, III, Keith A. Greer, Allen M. Miller, Wesley B. Nicholson, Kimberly D. Slan
  • Patent number: 7693375
    Abstract: A fiber optic cable includes at least one optical waveguide, at least one dry insert and a cable jacket. The at least one optical waveguide and at least one dry insert are at least partially disposed within a cavity of the cable jacket. In one embodiment, the cable includes a first dry insert and a second dry insert disposed within the cavity so that the at least one optical waveguide is disposed between the first dry insert and the second dry insert, thereby providing a dry cable core.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: April 6, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Riley S. Freeland, David Alan Seddon, Kenneth D. Temple, Jr., Anne G. Bringuier, Jody L. Greenwood
  • Patent number: 7668425
    Abstract: A bi-directional cable assembly for use with a fiber optic cable that includes at least one cable optical fiber that can carry bi-directional optical signals. The cable assembly is connected to the fiber optic cable at a mid-span location, where the cable fiber is preterminated to form upstream and downstream cable fiber sections. A tether having an upstream and/or a downstream tether fiber is spliced to corresponding preterminated upstream and/or downstream cable fibers at respective one or more splice locations. At least one of the tether fibers is a bend-resistant optical fiber that includes a bend angle equal to or about 180 degrees so that the tether extends in one direction from the mid-span access point along the fiber optic cable. A low-profile protective cover covers the mid-span access point and an end-portion of the tether. A protective tube may be used to house the bend-improved fiber and the splices that connect the cable fiber sections to the tether fibers.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 23, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Robert Bruce Elkins, II, Johannes Ian Greveling, Stephen Robert Horan, Jr.
  • Patent number: 7668427
    Abstract: A fiber optic cable having at least one optical fiber such as a microstructured bend performance optical fiber disposed within a protective covering. The protective covering is highly flexible and the fiber optic cable has extremely low delta attenuation when aggressively bent compared with the conventional fiber optic cable designs. By way of example, the delta attenuation of one fiber optic cable design is about 0.33 dB or less when wrapped 3 turns about a 7.5 millimeter mandrel at a reference wavelength of 1625 nanometers. Other variations of the present invention include a connector attached to the fiber optic cable.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 23, 2010
    Assignee: Corning Cable Systems LLC
    Inventor: James A. Register
  • Patent number: 7630605
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber and a water-swellable powder within a tube and/or cavity and methods for making the same. Fiber optic assemblies of the present invention use relatively low-levels of water-swellable powder while still effectively blocking the migration of tap water and/or saline solutions of 3% by weight along the tube and/or cavity. Furthermore, cleaning of the optical fibers is not necessary before connectorization like with conventional fiber optic cables that use a gel or grease. Generally speaking, at least some of the water-swellable powder is transferred to the inside surface of the tube, cavity, optical fiber or the like; rather, than being a loose powder that is able to migrate within the tube or cavity. Moreover, the existence of water-swellable powder within the fiber optic assembly or cable is nearly transparent to the craft since relatively low-levels are possible.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: December 8, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Warren W. McAlpine, Christopher M. Quinn, John A. Rowe, Dave A. Seddon, Catharina L. Tedder, Gilbert D. Tugman, Brian S. Witz, George Ndayizeye
  • Patent number: 7627214
    Abstract: An adjustable optical tap for adjusting input power, output power and drop power in a communications network includes an enclosure having a plurality of connector assemblies being configured for interconnecting input and output cables; a cover attachable to the enclosure, the cover including a plurality of drop cable ports; and a tunable splitter disposed in the enclosure in communication with the input cable and the drop cable ports, the tunable splitter being configured for adjustment to affect attenuation in a broad wavelength band.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: December 1, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Mark E. Conner, David R. Kozischek, Frances D. Carter, Daniel A. Nolan, William J. Miller, William T. Sawyer
  • Patent number: 7627218
    Abstract: The present invention provides an optical system that allows for the flexible location of an optical device that is coupled to a patch panel in a wiring closet or other optical signal source through a series of fiber optic cables and optical connections, or the flexible location of an array of such optical devices. The optical system includes, in part, one or more retractable optical fiber tether assemblies that each allow varying lengths of tether cable to be pulled and used. The retraction device of each of the optical tether assemblies may be disposed mid-tether cable, or may terminate the respective tether cable and incorporate the given optical device. In an exemplary wireless local area network (WLAN) application, each of the retractable optical fiber tether assemblies includes an integral transceiver and associated software. Thus, each of the retractable optical fiber tether assemblies functions as an antenna.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: December 1, 2009
    Assignee: Corning Cable Systems LLC
    Inventor: William Carl Hurley
  • Patent number: 7627250
    Abstract: The radio-over-fiber (RoF) transponder includes a converter unit adapted to convert RF electrical signals into optical signals and vice versa, and an antenna system electrically coupled to the converter unit. The antenna system includes first and second Z-shaped patch antenna elements formed on an antenna substrate. These patches are adapted to respectively transmit and receive radio-frequency (RF) electromagnetic radiation at a first frequency fA (e.g., 2.4 GHz) over a first picocell. The antenna system also includes a square patch antenna element formed atop the antenna substrate surface between the first and second Z-shaped patch antenna elements. The square patch antenna is adapted to transmit and receive RF electromagnetic radiation at a second frequency fB (e.g., 5.2 GHz) over a second picocell substantially co-located with the first picocell. One or more spaced-apart transponders can be supported by one or more optical fibers to form an array of picocells.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: December 1, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Jacob George, Michael Sauer, Luis A. Zenteno
  • Patent number: 7627217
    Abstract: Fiber optic cables are disclosed that have a toning lobe that allows the conductive wire to migrate toward the main cable body while still allowing adequate separation performance of the toning lobe. More specifically, the fiber optic cable includes a main cable body having at least one optical waveguide and a toning lobe. The toning lobe is connected to the main cable body by a web that frangible. In one embodiment, the toning lobe and the web have a generally tear drop shape. The web includes a neck portion adjacent to the main cable body and a web body, wherein the web body generally increases in thickness towards the toning lobe. The shape of the toning lobe allows a conductive wire of the toning lobe to migrate from a center of the toning lobe toward the main cable body while still providing adequate separation performance of the toning lobe.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: December 1, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Craig M. Conrad, Eric A. Stern
  • Patent number: 7599590
    Abstract: An optical cable comprises a swelling yarn, around which several optical transmission elements in the form of micromodules are arranged. A micromodule comprises a bundle of optic fibers, which are surrounded by a sleeve made from a material of plastic. Further swelling yarns are arranged around the optical transmission elements. The optical transmission elements and the swelling yarns are surrounded by a sleeve of paper. The paper sleeve is surrounded by a cable jacket made from a material of plastic. When an optic fiber is exposed, the cable jacket is pulled off, whereupon the paper sleeve tears off and can consequently be easily removed.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: October 6, 2009
    Assignee: CCS Technology, Inc.
    Inventors: Waldemar Stöcklein, Gerhard Merbach, Horst Knoch
  • Patent number: 7597591
    Abstract: A connection system for laying and connecting core pairs of a multi-pair data cable to connection pairs of a data jack with an accommodating device for accommodating and sorting, without crossing over, the core pairs of the data cable.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: October 6, 2009
    Assignee: CCS Technology, Inc.
    Inventor: Martin Leubner
  • Patent number: 7590354
    Abstract: A redundant transponder array for a radio-over-fiber (RoF) optical fiber cable is disclosed. The redundant transponder array includes two or more transponders having an antenna system. The antenna system has first and second antennas adapted to form first and second substantially co-located picocells when operated at respective first and second frequencies. The second antenna is adapted to form a picocell that extends into the adjacent picocell when operated at the first frequency. A transponder thus can serve as a backup transponder to a failed adjacent transponder by redirecting the first-frequency signal sent to the failed transponder to the second antenna of the adjacent transponder.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: September 15, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Michael Sauer, Andrey Kobyakov
  • Patent number: 7567741
    Abstract: Disclosed are fiber optic cables and assemblies for routing optical networks closer to the subscriber. The fiber optic cables have a robust design that is versatile by allowing use in aerial application with a pressure clamp along with use in buried and/or duct applications. Additionally, the fiber optic cables and assemblies have a relatively large slack storage capacity for excess length. Assemblies include hardened connectors and/or optical connectors such as plugs and/or receptacles suitable for outdoor plant applications attached to one or more ends of the fiber optic cables for plug and play connectivity.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: July 28, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: George C. Abernathy, David A. Seddon, Kenneth D. Temple, Jr.
  • Patent number: 7555181
    Abstract: A distribution fiber optic cable including a plurality of optical fibers, a main cable body with some of the plurality of optical fibers being disposed within the main cable body, at least one tether optical fiber, and a cable jacket. The at least one tether optical fiber is one of the plurality of optical fibers that transitions during manufacturing from a first location within the main cable body to a tether access location for a portion of the distribution cable. The cable jacket includes a main cable body jacket and a tether access jacket portion that are connected together by a continuous transition that is applied during cable manufacturing. Thus, the craftsman may conveniently access the at least one tether optical fiber for distribution into the optical network.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 30, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Kenneth D. Temple, Jr., David L. Dean, Jr., Jody L. Greenwood, Warren W. McAlpine, Keith H. Lail, Craig M. Conrad
  • Patent number: 7555176
    Abstract: An optical splitter has an optical chip, in which a conductor track is arranged on a carrier substrate, wherein a conductor track section of the conductor track running from a first side of the chip branches into different conductor track sections which run to a second side of the chip via a plurality of branching nodes. An optical waveguide section of an optical waveguide is bonded at the first side of the chip by means of an adhesive material. Correspondingly, optical waveguide sections are bonded on the second side of the chip by means of an adhesive material. In order to reinforce the fixing, glass plates are arranged over and under the optical waveguides, said glass plates being bonded to the optical chip at the respective lateral surfaces.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: June 30, 2009
    Assignee: CCS Technology, Inc.
    Inventors: Franz Draxler, Klaus Hartkorn, Markus Meinelt, Angela Rief, Wolfgang Schweiker