Patents Represented by Attorney C. Keith Montgomery
  • Patent number: 7536073
    Abstract: A fiber optic cable includes at least one optical waveguide, at least one dry insert and a cable jacket. The at least one optical waveguide and at least one dry insert are at least partially disposed within an offset cavity of the cable jacket. The at least one dry insert is disposed in the offset cavity with the at least one optical waveguide near the central axis of the fiber optic cable.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: May 19, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: David Alan Seddon, Kenneth D. Temple, Jr., Bradley J. Blazer, Anne G. Bringuier
  • Patent number: 7532796
    Abstract: A fiber optic ribbon having one or more fracture locations for influencing the separation of the same at predetermined locations is disclosed. The fiber optic ribbon includes a plurality of optical fibers held together by a primary matrix. The primary matrix includes a first fracture region for splitting the optical fiber ribbon into a plurality of optical fiber subsets. The first fracture region is defined by a first group of preferential tear features that protrude beyond a major primary matrix plane, thereby forming a first local minimum thickness between adjacent optical fibers. The first local minimum thickness enables splitting of the fiber optic ribbon into subsets at the first local minimum thickness, thereby allowing the craft to separate the fiber optic ribbon into subsets without using tools. Additionally, fiber optic ribbons of the invention may include a secondary matrix.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 12, 2009
    Assignee: Corning Cable Systems LLC
    Inventor: David W. Chiasson
  • Patent number: 7529451
    Abstract: A fiber optic cable including at least one optical fiber and at least one dry insert disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The dry insert has a first thickness and a second thickness located at different longitudinal locations along the dry insert, where the first thickness is greater than the second thickness. The region of the cable having the first thickness of the dry insert provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the optical fiber(s) have a predetermined level of coupling to the cable jacket that is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 5, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: William Eric Caldwell, Richard S. Wagman, Kenneth D. Temple, Jr.
  • Patent number: 7527435
    Abstract: A right-angle optical-fiber connector assembly for providing an optical connection to an external device such as a circuit board. The connector assembly includes a rigid ferrule having at least one right-angle bend and that defines an interior region and first and second ferrule ends, and a maximum optical fiber bending radius RMAX. One or more bend-performance optical fibers traverse the interior region. Each optical fiber has an associated minimum bending radius RMIN and includes a bending radius RF such that RMIN?RF?RMAX, wherein at least one of the one or more optical fibers has RF=RMIN. The first and second connector ends are respectively located at or near the first and second ferrule ends and operably support the first and second optical fiber ends. The connector ends are each adapted to provide an external optical interconnection to an external device such as a circuit board.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 5, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: David Lee Dean, Jr., Dennis Michael Knecht, Thomas Theuerkorn
  • Patent number: 7526163
    Abstract: Cables that are detectable and/or identified from a distant location using detection equipment are disclosed. The cables include at least one communication element, a jacket, and at least one antenna element such as a parasitic antenna element. In one embodiment, the antenna element is at least partially formed from a conductive ink as a portion of a cable component that is generally deployed along a longitudinal direction of the cable. In use, the antenna element is capable of providing a predetermined electromagnetic signature for a predetermined frequency transmitted in its proximity, thereby indicating the location and/or identification of the cable for the craft.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 28, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Riley S. Freeland, William C. Hurley
  • Patent number: 7495560
    Abstract: The wireless radio-frequency identification (RFID) picocellular system includes a central control station optically coupled to one or more electrical-optical (E-O) access point devices that generate the individual picocells. The central control station includes service units that provide conventional wireless cellular services, and further includes one or more RFID reader units. The E-O access point devices are adapted to receive electromagnetic RFID tag signals from RFID tags within the associated picocell and transmit optical RFID tag signals to the central control station, which converts the optical RFID tag signals to electrical RFID tag signals, which are then received by the one or more RFID reader units. The system allows for large numbers of RFID tags in the picocellular coverage area to be quickly read and the information stored.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: February 24, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Martyn N. Easton, Michael Sauer, Richard S. Vodhanel
  • Patent number: 7493044
    Abstract: A method of transmitting data includes receiving a plurality of downstream wavelength streams from a first optical fiber, each wavelength stream corresponding to a separate downstream data transmission, passing all downstream streams but at least one downstream targeted-wavelength stream to a second optical fiber, and routing the downstream targeted-wavelength stream to a subscriber on a third optical fiber, wherein the first optical fiber, the second optical fiber, and the third optical fiber are connected to a single device, and wherein the third optical fiber is a drop cable.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: February 17, 2009
    Assignee: Corning Cable Systems, LLC
    Inventors: David R. Kozischek, Karl T. Messmer
  • Patent number: 7471862
    Abstract: A fiber optic cable includes at least one optical fiber, at least one strength member, at least one dry insert, and a cable jacket. The cable jacket has a cavity with a generally rectangular cross-section with the at least one optical fiber and the at least one dry insert disposed therein. The at least one optical fiber has a predetermined level of coupling to the cable jacket that is provided by the at least one dry insert within the cavity of cable jacket. The predetermined level of coupling is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable. Additionally, fiber optic cables of the present invention are also suitable as a portion of a cable assembly.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: December 30, 2008
    Assignee: Corning Cable Systems, LLC
    Inventors: Anne G. Bringuier, Jody L. Greenwood, David Alan Seddon, Kenneth D. Temple, Jr.
  • Patent number: 7471861
    Abstract: Between an optical fiber (LF11, LFB12, LFB13) and a surrounding core covering (AH11, AH12, SB13) of an optical transmission element (OE11 to OE13) there is at least one dry and compressible fixating element (FE11 to FE13), which surrounds the optical fiber totally or partially, and which exerts a defined contact pressure against the core covering and against the optical fiber for fixating the optical fiber in the longitudinal direction of the transmission element. The fixating element is further formed and positioned in such a way, that position changes of the optical fiber due to bending or elongation are possible. In this way, unallowable attenuation increases in the optical fiber due to bending or position changes can be avoided.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 30, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Reiner Schneider, Edgar Heinz, Frank Koschwitz
  • Patent number: 7469087
    Abstract: An optical tube assembly having at least one optical waveguide, at least one dry insert, and a tube. The at least one optical waveguide is disposed within the tube and generally surrounds the at least one optical waveguide. In one embodiment, the dry insert has a first layer comprising a felt having at least one type of non-continuous filament. The dry insert may also include a plurality of water-swellable filaments. In another embodiment, a dry insert has a first layer, a second layer, and a plurality of water-swellable filaments. The first and second layers are attached together at least along the longitudinal edges thereof, thereby forming at least one compartment between the first and second layers and the plurality of water-swellable filaments are generally disposed in the at least one compartment. The dry insert also is advantageous in tubeless cable designs.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: December 23, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Alan T. Parsons, Kenneth D. Temple, Jr., Jody L. Greenwood, Jason C. Lail
  • Patent number: 7414190
    Abstract: A NID includes a base defining an interior cavity and a protective outer cover attached to the base for movement between an opened position and a closed position. At least one of the base and the outer cover has one or more channels formed therein and the other of the base and the outer cover has one or more lips that depend outwardly therefrom. Each lip is received within a corresponding channel formed on the other of the base and the outer cover. The lip and the channel have side portions that engage at multiple contact points to form an environmental seal that prevents contaminants, such as wind-driven dust, sand and moisture, from entering the interior cavity when the outer cover is in the closed position, thereby protecting communications equipment within the NID without the use of an elastomeric gel, seal or gasket.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: August 19, 2008
    Assignee: Corning Cable Systems LLC
    Inventor: Chanh C. Vo
  • Patent number: 7415181
    Abstract: A fiber optic cable has at least one optical fiber, at least one strength member having a major strength member dimension, and a cable jacket. The cable jacket has two major surfaces that are generally flat and includes a cavity with a cavity minor dimension generally orientated with a minor dimension of the fiber optic cable, wherein the at least one optical fiber is disposed within the cavity. In one embodiment, the cavity minor dimension of the fiber optic cable is about the same size or larger than the strength member dimension that is generally aligned with a minor dimension of the cable, thereby allowing access to the cavity when the fiber optic cable is entered while inhibiting damage to the at least one optical fiber. Fiber optic cables of the present invention are also suitable as a portion of a cable assembly.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: August 19, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Jody L. Greenwood, David L. Dean, Jr., Kenneth D. Temple, Jr., Keith H. Lail