Patents Represented by Attorney, Agent or Law Firm Dennis S. Fernandez
  • Patent number: 5206775
    Abstract: A circuit bypass device (30) having terminals (70, 80) is connected to contacts (70, 80) of a cell (20) to provide a conductive path (40) in response to voltage excursion therebetween. Device (30) includes: a conductive shunt (40), coupled to contacts (70, 80), that is movable from a normally non-conductive position to a conductive position between terminals (70, 80); a detector (50), coupled to conductive shunt (40), for sensing voltage excursion beyond specified limits between contacts (70, 80); and an actuator (60) having a heat-to-recover shape memory metal alloy that is formed to contract when detector (50) senses the voltage excursion, for moving conductive shunt (40) from the non-conductive position to the conductive position. The formed alloy is preferably spring-shape which contracts translationally and torsionally.
    Type: Grant
    Filed: May 23, 1991
    Date of Patent: April 27, 1993
    Assignee: Space Systems/Loral, Inc.
    Inventor: Jean P. Wilson
  • Patent number: 5201292
    Abstract: An electronic detection system for detecting vibration patterns from physical events, such as engine knocking or articulated speech, senses a vibration source with a wideband transducer to provide a sensed signal, then converts this signal to energy amplitude and spectral frequency form to extract detectable features of the vibration pattern. Events are detected when a controller determines that the sensed energy and spectral data exceed adaptively-predetermined energy and spectral thresholds, preferably for a duration exceeding predefined time windows.
    Type: Grant
    Filed: August 30, 1991
    Date of Patent: April 13, 1993
    Assignee: Loral Aerospace Corp.
    Inventors: Kamil A. Grajski, Carson Chen, Garry Chinn
  • Patent number: 5179550
    Abstract: A system and method for controlling a multi-point matrix switch (13) to route signals in a communication system (11). The invention identifies source and destination ports (129, 133) in the communication system (11) and then polls identified ports (129, 133) to recognize those that are available for communication. Identified and recognized ports (129, 133) are displayed graphically, so that at least one path (139) between recognized source ports (129, 133) and associated recognized destination ports (129, 133) may be selected graphically by user (159) input. Selected path (139) information is then submitted to switch (13) to cause switch (13) to route signals through the selected paths (139) by connecting recognized source ports (129, 133) to associated recognized destination ports (129, 133).
    Type: Grant
    Filed: March 7, 1991
    Date of Patent: January 12, 1993
    Assignee: Loral Aerospace Corp.
    Inventor: William B. Simpson
  • Patent number: 5179302
    Abstract: An electronic data filter system (10), which functions as an approximation of a perfect matched filter, receives a conventional square-wave digital input signal (12) and outputs a filtered output signal (18). Output signal (18) appears as the summed integral of input signal (12). Filter system (10) includes a rate detector (50), which receives input signal (12) and provides a tuning voltage (16), and a data filter (30) which provides output signal (18). Data filter (30) includes, arranged in series, a notch filter (80) and a low-pass filter (90), wherein such filters (80, 90) contain capacitive-inductive circuits having certain value ratios which are tunable responsive to tuning voltage (16). Signal degradation of the filtered signal (12, 18) is minimized by filter system (10), which reduces the bit error rate (BER) and noise bandwidth of the filtered signal (12, 18). In one embodiment, data filters (30) are cascaded in parallel to extend data filtering bandwidth.
    Type: Grant
    Filed: April 3, 1991
    Date of Patent: January 12, 1993
    Assignee: Loral Aerospace Corp.
    Inventor: Gary L. Wagner
  • Patent number: 5166650
    Abstract: A remote waveguide flange clamp system (10, 11) detachably connects a first waveguide section (20) to a second waveguide section (30, 37). System (10, 11) is controlled remotely by a controller (60). A pair of elongated clamping levers (40) is mounted pivotally to pins (42) on bracket arms (39) of section (30, 37). Levers (40) rotate about pins (42) when a motor assembly (51) moves driving ends (47) of levers (40) outwardly or inwardly relative to section (30, 37). When ends (47) move outwardly, clamping ends (44) of levers (40) apply a compressive force to flanges (22, 32) of sections (20, 30) to provide a gasketed seal (80) inhibiting RF leakage therebetween. Assembly (51) includes a torque sensor (66) for continuously applying current to a motor (50) in assembly (51) until sensor (66) measures current substantially equaling a predefined value.
    Type: Grant
    Filed: July 25, 1991
    Date of Patent: November 24, 1992
    Assignee: Loral Aerospace Corp.
    Inventors: James A. Simmons, Greggory R. Hansen
  • Patent number: 5082710
    Abstract: A coated article comprising an article to be encapsulated within an encapsulant and subjected to hot isostatic pressing, and a coating. The coating is composed of boron nitride and carbon in an amount effective to reduce interaction between the article and the encapsulant during the hot isostatic pressing. The carbon is present up to about 30% by weight of the total boron nitride and carbon in said coating.
    Type: Grant
    Filed: December 11, 1989
    Date of Patent: January 21, 1992
    Assignee: Loral Aerospace Corp.
    Inventor: Joseph M. Wright
  • Patent number: 5038151
    Abstract: A stationary, lightweight, easily transportatable antenna capable of full duplex operation, i.e., portions of the antenna can transmit and receive simultaneously in the same frequency band. The antenna has a near omnidirectional pattern in the azimuth plane for both transmit and receive. The receive portion (2) consists of four antenna elements (20), each having a beamwidth in the azimuth plane slightly greater than 90.degree.. The receive antennas (20) are arranged symmetrically about a midpoint (93) that lies in the azimuth plane. The beams of the four receive antennas (20) face outwardly away from the midpoint (93) and thereby cover the full azimuth plane. The transmit portion (1) of the antenna is a colinear set of dipole elements (12) arranged within a cylinder (11) that is orthogonal to the azimuth plane and centered on said midpoint (93).
    Type: Grant
    Filed: July 31, 1989
    Date of Patent: August 6, 1991
    Assignee: Loral Aerospace Corp.
    Inventor: Walter J. Kaminski