Patents Represented by Attorney, Agent or Law Firm Eric J. Robinson
  • Patent number: 6784033
    Abstract: A method for the manufacture of an insulated gate field effect semiconductor device comprised of a semiconductor substrate, a gate insulating layer member having at least an insulating layer, and a gate electrode. The insulating layer is formed of silicon or aluminum nitride on the semiconductor substrate or the gate electrode by a photo CVD process.
    Type: Grant
    Filed: January 27, 1995
    Date of Patent: August 31, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6778164
    Abstract: In an electrooptical device including an electrooptical modulating layer between a first substrate 101 and a second substrate 105, all edges 107 to 109 of the first substrate 101 and the second substrate 105, except an edge where IC chips 110 and 111 are attached, are trued up each other between the first substrate 101 and the second substrate 105. By this, it is possible to make the area of the first substrate 101 minimum.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Yoshiharu Hirakata, Takeshi Fukunaga
  • Patent number: 6778159
    Abstract: For a gradation displaying operation for an electro-optical device, a gradation display system which can be controlled by a digital signal and is hard to be affected by variation in characteristics between respective elements and which can achieve high gradation, is provided. In the active matrix type electro-optical device, by the digital control of time and amplitude of a voltage pulse applied to each picture element electrode, composite pulses having plural voltage values and pulse widths are formed for one frame of an image so that an average effective voltage of the one frame of the image is made an arbitrary value, thereby finally displaying an intermediate color tone on liquid crystal.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masaaki Hiroki, Yasuhiko Takemura
  • Patent number: 6777763
    Abstract: In a thin film transistor (TFT), a mask is formed on a gate electrode, and a porous anodic oxide is formed in both sides of the gate electrode using a relatively low voltage. A barrier anodic oxide is formed between the gate electrode and the porous anodic oxide and on the gate electrode using a relatively high voltage. A gate insulating film is etched using the barrier anodic oxide as a mask. The porous anodic oxide is selectively etched after etching barrier anodic oxide, to obtain a region of an active layer on which the gate insulating film is formed and the other region of the active layer on which the gate insulating film is not formed. An element including at least one of oxygen, nitrogen and carbon is introduced into the region of the active layer at high concentration in comparison with a concentration of the other region of the active layer. Further, N- or P-type impurity is introduced into the active layer.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Hideto Ohnuma, Naoaki Yamaguchi, Yasuhiko Takemura
  • Patent number: 6777273
    Abstract: A small semiconductor display device of low power consumption and with high definition/high resolution/high image quality is provided. The semiconductor display device according to the present invention comprises a pixel matrix circuit, a data line driver circuit and scanning line driver circuits, and these components are formed on the same substrate using a polycrystalline TFT. The fabricating method of the device which includes a process for promoting crystallization by a catalytic element and a process for gettering the catalytic element provides the semiconductor display device with high definition/high resolution/high image quality while it is small in size.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Hideto Ohnuma, Yutaka Shionoiri, Shou Nagao
  • Patent number: 6776880
    Abstract: A plurality of processing chambers are connected to a common chamber (103 in FIG. 1), and they comprehend a processing chamber for oxidation (107), a processing chamber for solution application (108), a processing chamber for baking (109), and processing chambers for vapor-phase film formation (110, 111). Owing to a thin-film forming apparatus of such construction, it is permitted to fabricate an EL (electroluminescence) element employing a high-molecular EL material, without touching the open air. Thus, an EL display device of high reliability can be fabricated.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6778231
    Abstract: A display device including a substrate and at least one thin film transistor formed over the substrate, wherein the thin film transistor includes a semiconductor film. An insulating film including an inorganic material is provided over the thin film transistor. A leveling film including an organic resin is formed over the substrate and covers the thin film transistor. A pixel electrode is formed on the leveling film and is directly connected to the semiconductor film of the thin film transistor through an opening provided in the leveling film, wherein an edge of the organic resin film at a periphery of the opening is round.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akira Mase, Masaaki Hiroki, Yasuhiko Takemura
  • Patent number: 6777887
    Abstract: An EL display device capable of producing a vivid multi-gradation color display, and an electronic device having the EL display device. An electric current supplied to an EL element 110 is controlled by providing a resistor 109 between a current control TFT 108 and the EL element 110 formed in a pixel 104, the resistor 109 having a resistance higher than the on-resistance of the current control TFT 108. The gradation display is executed by a time-division drive system which controls the emission and non-emission of light of the EL element 110 by time, preventing the effect caused by a dispersion in the characteristics of the current control TFT 108.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Patent number: 6777713
    Abstract: By adding a novel improvement to the technique disclosed in JP 8-78329 A, a manufacturing method in which film characteristics of a semiconductor film having a crystalline structure are improved is provided. In addition, a TFT having superior TFT characteristics, such as field effect mobility, which uses the semiconductor film as an active layer, and a method of manufacturing the TFT, are also provided. A metallic element which promotes the crystallization of silicon is added to a semiconductor film having an amorphous structure and an oxygen concentration within the film of less than 5×1018/cm3. The semiconductor film having an amorphous structure is then heat-treated, forming a semiconductor film having a crystalline structure. Subsequently, an oxide film on the surface is removed. Oxygen is introduced to the semiconductor film having a crystalline structure, and processing is performed such that the concentration of oxygen within the film is from 5×1018/cm3 to 1×1021/cm3.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: August 17, 2004
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Hidekazu Miyairi, Aiko Shiga, Katsumi Nomura, Naoki Makita, Takuya Matsuo
  • Patent number: 6777711
    Abstract: An insulated-gate field-effect transistor adapted to be used in an active-matrix liquid-crystal display. The channel length, or the distance between the source region and the drain region, is made larger than the length of the gate electrode taken in the longitudinal direction of the channel. Offset regions are formed in the channel region on the sides of the source and drain regions. No or very weak electric field is applied to these offset regions from the gate electrode.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akira Mase, Masaaki Hiroki, Yasuhiko Takemura, Hongyong Zhang, Hideki Uochi, Hideki Nemoto
  • Patent number: 6774400
    Abstract: An object of the invention is to provide a technique for improving the characteristics of a TFT and realizing an optimum structure of the TFT for the driving conditions of a pixel section and a driving circuit by a small number of photo masks. Therefore, a light emitting device has a semiconductor film, a first electrode and a first insulating film nipped between the semiconductor film and the first electrode. Further, the light emitting device has a second electrode and a second insulating film nipped between the semiconductor film and the second electrode. The first and second electrodes are overlapped with each other through a channel forming area arranged in the semiconductor film. In the case of a TFT in which a reduction in off-electric current is considered important in comparison with an increase in on-electric current, a constant voltage (common voltage) is applied to the first electrode at any time.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: August 10, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 6773971
    Abstract: There is provided a method by which lightly doped drain (LDD) regions can be formed easily and at good yields in source/drain regions in thin film transistors possessing gate electrodes covered with an oxide covering. A lightly doped drain (LDD) region is formed by introducing an impurity into an island-shaped silicon film in a self-aligning manner, with a gate electrode serving as a mask. First, low-concentration impurity regions are formed in the island-shaped silicon film by using rotation-tilt ion implantation to effect ion doping from an oblique direction relative to the substrate. Low-concentration impurity regions are also formed below the gate electrode at this time. After that, an impurity at a high concentration is introduced normally to the substrate, so forming high-concentration impurity regions. In the above process, a low-concentration impurity region remains below the gate electrode and constitutes a lightly doped drain region.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: August 10, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Yasuhiko Takemura, Toshimitsu Konuma, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi
  • Patent number: 6774397
    Abstract: To realize the reduction of a manufacturing cost and the enhancement of yield by reducing the number of steps of a TFT in an electro-optical device typified by an active matrix liquid crystal display device. A semiconductor device of the present invention is characterized by including a first wiring and a second wiring formed of a first conductive film on the same insulating surface, a first semiconductor film of one conductivity type formed on the first and second wirings so as to correspond thereto, a second semiconductor film formed on an upper layer of the first semiconductor film of one conductivity type across the first wiring and the second wiring, an insulating film formed on the second semiconductor film, and a third conductive film formed on the insulating film.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: August 10, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Arao, Hideomi Suzawa
  • Patent number: 6774574
    Abstract: An EL display device capable of producing a vivid multi-gradation color display, and an electronic device having the EL display device. An electric current supplied to an EL element 110 is controlled by providing a resistor 109 between a current control TFT 108 and the EL element 110 formed in a pixel 104, the resistor 109 having a resistance higher than the on-resistance of the current control TFT 108. The gradation display is executed by a time-division drive system which controls the emission and non-emission of light of the EL element 110 by time, preventing the effect caused by a dispersion in the characteristics of the current control TFT 108.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: August 10, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Patent number: 6771238
    Abstract: Disclosed is a high-definition liquid crystal display device wherein a video signal applied to the pixel electrode is compensated for a gain decrease in a high frequency range. A video signal processing circuit includes an inversion processing circuit which outputs at least one video signal inputted to a source driver circuit. The inversion processing circuit includes an amplifier and has function of amplification and inversion. A peaking processing circuit is connected to an amplifier in the inversion processing circuit. Even if a video signal frequency fvid is in a high range of the amplifier, the amplifier gain is increased up to an middle range value (frequency range that the gain becomes constant). Because the peaking circuit compensates for characteristics of the liquid crystal panel, it is possible for the inversion processing circuit to apply an alternating current signal reproduced with fidelity of a potential determined by a correction circuit to the liquid crystal cell.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: August 3, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Masaaki Hiroki
  • Patent number: 6772378
    Abstract: A dummy error addition circuit for adding a dummy error to an orthogonal modulation symbol data, wherein a value based on a specified bit error rate is loaded to count clock signals at a counter (11), a carrier of the counter (11) stores outputs from a PN data generator (21) in a shift register (22), outputs from a PN comparison circuit (3) when stored data agree with count values of the counter (11) are recognized as error pulses, a bit selector (40) randomly selects, on receiving error pulses and based on outputs from a PN data generator (41), bits to which to add errors in an orthogonal modulation data, e.g. a PSK modulation symbol data, at interval based on a bit error rate, and bits selected from the orthogonal modulation data are inverted in a bit inversion circuit (5) for outputting to thereby add errors.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: August 3, 2004
    Assignees: Kabushiki Kaisha Kenwood, Kenwood TMI Corporation
    Inventors: Kenichi Ishihara, Kenichi Shiraishi, Soichi Shinjo, Akihiro Horii
  • Patent number: 6770518
    Abstract: The crystallization method by laser light irradiation forms a multiplicity of convexes (ridges) in the surface of an obtained crystalline semiconductor film, deteriorating film quality. Therefore, it is a problem to provide a method for forming a ridge-reduced semiconductor film and a semiconductor device using such a semiconductor film. The present invention is characterized by heating a semiconductor film due to a heat processing method (RTA method: Rapid Thermal Anneal method) to irradiate light emitted from a lamp light source after crystallizing the semiconductor film by laser light, thereby reducing the ridge.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: August 3, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideto Ohnuma, Tamae Takano, Toru Mitsuki
  • Patent number: 6771347
    Abstract: Non-uniformity of a cell gap of a liquid crystal panel is suppressed from affecting display adversely. Concentric interference fringes are unavoidably formed in a liquid crystal cell in which liquid crystal is sealed and the cell gap is maintained by a sealing member without using scattered spacers. Then, peripheral driving circuits are provided in regions where the interference fringes exist and a pixel matrix circuit is disposed in a region where no interference fringe exists. It is then possible to suppress the cell gap from affecting the display by determining the circuit configuration by parameterizing the interference fringes as described above.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: August 3, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshiharu Hirakata
  • Patent number: 6772425
    Abstract: A vehicle mount disc player having a small thickness by removing a wasteful space around a reproduction unit chassis when a disc is loaded or unloaded. The vehicle mount disc player has the reproduction unit chassis supported in a floating state by a main chassis via damper mechanisms. The reproduction unit chassis is locked so as to be shifted to a disc motor side along an axial direction of a disc motor and a turntable when the disc is loaded or unloaded.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: August 3, 2004
    Assignee: Kabushiki Kaisha Kenwood
    Inventors: Takafumi Suwa, Shoji Tomioka, Tsutomu Imai, Yosuke Haga, Takeharu Sasada
  • Patent number: 6767799
    Abstract: A laser beam irradiation method that achieves uniform crystallization, even if a film thickness of an a-Si film or the like fluctuates, is provided. The present invention provides a laser beam irradiation method in which a non-single crystal semiconductor film is formed on a substrate having an insulating surface and a laser beam having a wavelength longer than 350 nm is irradiated to the non-single crystal semiconductor film, thus crystallizing the non-single crystal silicon film. The non-single crystal semiconductor film has a film thickness distribution within the surface of the substrate, and a differential coefficient of a laser beam absorptivity with respect to the film thickness of the non-single crystal semiconductor film is positive.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 27, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Kenji Kasahara, Aiko Shiga, Hidekazu Miyairi, Koichiro Tanaka, Koji Dairiki