Patents Represented by Attorney, Agent or Law Firm Eric R. Waldkoetter
  • Patent number: 7499738
    Abstract: Assembly and method for measuring the concentration of an analyte in a biological matrix. The assembly includes an implantable optical-sensing element that comprises a body, and a membrane mounted on the body in a manner such that the membrane and the body define a cavity. The membrane is permeable to the analyte, but is impermeable to background species in the biological matrix. A refractive element is positioned in the cavity. A light source transmits light of a first intensity onto the refractive element, and a light detector receives light of a second intensity that is reflected from the cavity. A controller device optically coupled to the detector compares the first and second light intensities, and relates the intensities to analyte concentration.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: March 3, 2009
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Martin Gerber, Matthias Essenpreis, Wolfgang Petrich
  • Patent number: 7044932
    Abstract: An implantable drug pump and an access template for locating the implanted pump refill septum, also known as a refill port, or cathether access port are disclosed. The access template comprises a denial surface, an access port, and template labeling. The denial surface has a periphery with a location diameter and an alignment feature. The denial surface is configured to prevent penetration through a dermal layer into the implantable drug pump. The access port carried on the denial surface is configured to permit penetration through the dermal layer. The template labeling uses a label color that is substantially the same color as needle labeling color for a needle sheath covering a needle that is intended to access an implantable drug pump. The access template can be configured into a wide variety of apparatus and method embodiments.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: May 16, 2006
    Assignee: Medtronic, Inc.
    Inventors: Craig Frederic Borchard, Michael Hexiang Zhu Drew, Jeffrey Richard Bennett
  • Patent number: 6941332
    Abstract: A method for fast median filtering in an implantable medical device is disclosed that provides rapid filtering using computational mechanisms with following elements. A new sample value is received into a buffer. An oldest sample value location is identified in a MIN-heap and a MAX-heap. A new sample value location is identified in either the MIN-heap or the MAX-heap by comparing the new sample value to a median value. The new sample value is placed into the oldest sample value location, if the MIN-heap or MAX-heap identified for the new sample value location is the same as the MIN-heap or MAX-heap identified for the oldest sample value location. A MIN-heap top or MAX-heap top is moved from the heap not containing the oldest value into the location of the oldest sample and the new sample is placed into the location of the MIN-heap top or MAX-heap top moved from the heap not containing the oldest value, if the heap identified for the new sample is not the same as the heap identified for the oldest sample.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: September 6, 2005
    Assignee: Medtronic, Inc.
    Inventor: Steven L. Jensen
  • Patent number: 6749581
    Abstract: A medical device known as a catheter is configured with a variable infusion rate to deliver a therapeutic substance such as pharmaceutical compositions, genetic materials, and biologics to treat a variety of medical conditions such as pain, spastisity, cancer, and other diseases in humans and other animals. The variable infusion rate catheter provides clinician with increased flexibility, versatility, and many other improvements. The variable infusion rate catheter has a Micro Electro Mechanical System (MEMS) flow restriction with a variable infusion rate. The MEMS flow restriction is fluidly coupled to the catheter to receive therapeutic substance dispensed from a therapeutic substance delivery device and restrict the therapeutic substance flow to a desired infusion rate. Many embodiments of the variable infusion rate catheter and its methods of operation are possible.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: June 15, 2004
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Michael F. Mattes, Lary R. Larson, Kenneth T. Heruth
  • Patent number: 6692834
    Abstract: Coating an implantable device, such as micro electromechanical devices, is highly desirable to protect the implantable device from corrosion. A coating method includes depositing, preferably by plasma glow discharge, a reactant monomer on at least one surface of an implantable device, preferably at ambient temperature. The method will likely decrease the manufacturing time required for assembling such devices because completely assembled devices can be coated.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: February 17, 2004
    Assignee: Medtronic, Inc.
    Inventors: Gonzalo Martinez, Catherine E. Taylor, Kenneth W. Keeney, Markus Haller
  • Patent number: 6671555
    Abstract: A system and method for predicting the likelihood of occurrence of an impending neurological episode. Electrical stimuli are delivered to a structure of the brain. Response field potentials evoked by the stimuli are sensed. Analysis of these field potentials allows for predictions as to the occurrence of an impending, but not yet occurring, neurological disorder. In one example, a measurement of change in response pulses is used to determine a level of interconnectivity in the structures of the brain. The level of functional interconnectivity is used in predicting the occurrence of the neurological event. An example of such a neurological event includes an epileptic seizure.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: December 30, 2003
    Assignee: Medtronic, Inc.
    Inventors: Frans L. H. Gielen, Wytse J. Wadman
  • Patent number: 6663609
    Abstract: A device and method configured for placement into the catheter access port to prevent insertion of a needle into the catheter access port. The device a prong to engage the housing and lock itself in the catheter access port, an annular surface having geometry complimentary to the catheter access port to seal the denial device, and a face configured to deny needle access to the catheter access port. The device is also self sealing to substantial prevent deposition between itself and the catheter access port, is configured to be inserted without the need for tools, and is manufactured from biocompatible material. The method for inserting this device consists of aligning the device with the catheter access port, inserting the device, confirming it is in place, and sealing it into the catheter access port.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: December 16, 2003
    Assignee: Medtronic, Inc.
    Inventors: Shobha Devi Williamson, Chris C. Christiansen, Laura Sue McWilliam
  • Patent number: 6650938
    Abstract: A method of pacing cardiac tissue using an implantable medical device is provided. A first fibrillation-indicative interval is determined based on a first fibrillation-indicative event. A first adjusted pacing interval, wherein the first adjusted pacing interval is shorter than the first fibrillation-indicative interval, is determined and the cardiac tissue is paced based on the first adjusted pacing interval. If the cardiac tissue is not captured by pacing at the first adjusted pacing interval, an additional fibrillation-indicative interval is determined based on an additional earlier fibrillation-indicative event. An additional adjusted pacing interval, wherein the additional adjusted pacing interval is shorter than the additional fibrillation-indicative interval is determined and the cardiac tissue is paced based on the additional adjusted pacing interval.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: November 18, 2003
    Assignee: Medtronic, Inc.
    Inventor: Willem Boute
  • Patent number: 6650941
    Abstract: Programming wands, systems and methods are provided for programming implantable medical devices (IMDs). The programming wands of the present invention preferably include one or more input devices which may be manipulated to control the programming process. In some embodiments, the input device includes one or more of a trackball, a button, and a scrolling wheel. By providing input devices on the programming wand, a physician or medical technician may control the programming process with the same hand that supports the programming wand.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: November 18, 2003
    Assignee: Medtronic, Inc.
    Inventor: Bozidar Ferek-Petric
  • Patent number: 6636762
    Abstract: A method of monitoring heart failure is provided. A baseline heart rate change value is determined, wherein the baseline heart rate change value comprises a speed at which a first initial heart rate changes to a second initial heart rate. At least one subsequent heart rate change value is also determined, wherein the subsequent heart rate change value comprises a subsequent speed at which a first subsequent heart rate changes to a second subsequent heart rate. The subsequent heart rate change value is compared to the baseline heart rate change value to obtain at least one heart failure value. Systems and programs for using the method are also provided.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: October 21, 2003
    Assignee: Medtronic, Inc.
    Inventor: Malcolm J. Begemann
  • Patent number: 6630460
    Abstract: Heparin-polyoxyalkylenepolyamine adducts, and methods of making and using such adducts are disclosed. Compositions including a quaternary ammonium heparin complex, a moisture curable polysiloxane, and an organic solvent are also disclosed, along with methods of making and using such compositions.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: October 7, 2003
    Assignee: Medtronic, Inc.
    Inventor: Edouard Koulik
  • Patent number: 6629954
    Abstract: A medical device and more particularly a drug delivery pump has an hydraulic reservoir, a metering device, a displacement reservoir, a drug reservoir, and a drug infusion port all contained in a housing that can either be attached to or implanted into a patient. The hydraulic reservoir contains an hydraulic fluid that is under compression and flows through the metering device at an hydraulic rate. The hydraulic metering is isolated from the drug, and the metering device does not contain moving parts. The hydraulic fluid then flows into the displacement reservoir that applies pressure to the drug reservoir. The drug reservoir is compressible and adapted to contain a drug. As the drug reservoir is compressed, drug egresses through the drug infusion port at an infusion rate that is controlled by hydraulic rate. A method for filling the drug pump and a method for infusing drug from the drug pump are also disclosed.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: October 7, 2003
    Assignee: Medtronic, Inc.
    Inventor: Kenneth T. Heruth
  • Patent number: 6595927
    Abstract: A method of diagnosing pulmonary congestion is provided. At least one decrease in a trans-thoracic impedance value from a baseline trans-thoracic impedance value is sensed. At least one increase in a heart rate value from a baseline heart rate value is also sensed. Pulmonary congestion is diagnosed if the decrease in the trans-thoracic impedance value corresponding to the increase in the heart rate does not increase after a predetermined interval. Systems and programs incorporating the method are also provided.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: July 22, 2003
    Assignee: Medtronic, Inc.
    Inventors: Jonathan Pitts-Crick, Geeske Van Oort
  • Patent number: 6572542
    Abstract: Information derived from ECG signals and EEG signals may be employed in combination to reliably predict the onset, or to indicate the presence of, hypoglycemia in a human patient. In one embodiment, ECG and EEG signals are processed and the information derived from them is combined to determine whether a patient suffering from diabetes is undergoing a hypoglycemic event, or whether such an event is imminent. Input data from the patient or a health care provider may also be used to increase the accuracy and reliability of the system. Detection of a hypoglycemic event by the system can result in the output of an alarm signal and/or the delivery or administration of a beneficial agent such as insulin, glucagon or diazoxide to the patient. The system may be implantable, external, or a combination of external and implantable components. The control strategy of the present system is preferably microprocessor based and/or implemented using dedicated electronics.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: June 3, 2003
    Assignee: Medtronic, Inc.
    Inventors: Richard Houben, Vincent Larik
  • Patent number: 6567701
    Abstract: A method of discriminating a captured beat is provided. A pulse is transmitted and an evoked response signal is received. The evoked response signal is filtered and the filtered response signal is analyzed for at least one positive signal component. Systems and devices for discriminating a captured beat are also provided.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: May 20, 2003
    Assignee: Medtronic, Inc.
    Inventor: Bernardus F. M. Vonk
  • Patent number: 6564098
    Abstract: A method and system for increasing a pacer function of an implantable medical device disposed within a mammalian heart is provided. Generally speaking, the present invention provides pacing the mammalian heart according to a first pacing rate. A command to increase the first pacing rate is then received. Additionally, an upper pacing rate is received. A time interval is then received. Finally, the first pacing rate of the mammalian heart is increased to the second pacing rate during the time interval.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: May 13, 2003
    Assignee: Medtronic, Inc.
    Inventor: Harry B. A. Kerver
  • Patent number: 6562000
    Abstract: A medical device known as a therapeutic substance delivery device is configured to with an infusion rate control to deliver a therapeutic substance such as pharmaceutical compositions, genetic materials, and biologics to treat a variety of medical conditions such as pain, spastisity, cancer, and other diseases in humans and other animals. The therapeutic substance delivery device can be configured as a single-use device that is versatile, small, inexpensive, and has many other improvements. The single-use device has a Micro Electro Mechanical System (MEMS) flow restriction with a variable infusion rate. The MEMS flow restriction is fluidly coupled to a reservoir outlet to receive therapeutic substance dispensed from the single-use reservoir at the reservoir rate and restrict the therapeutic substance flow to a desired infusion rate. The single-use reservoir is configured for controlled collapse to dispense therapeutic substance from the reservoir at a reservoir rate through a reservoir outlet.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: May 13, 2003
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Michael F. Mattes, Lary R. Larson, Kenneth T. Heruth
  • Patent number: 6558345
    Abstract: There is provided an implantable system and method for monitoring pancreatic beta cell electrical activity in a patient in order to obtain a measure of a patient's insulin demand and blood glucose level. A stimulus generator is controlled to deliver stimulus pulses so as to synchronize pancreatic beta cell depolarization, thereby producing an enhanced electrical signal which is sensed and processed. In a specific embodiment, the signal is processed to determine the start and end of beta cell depolarization, from which the depolarization duration is obtained. In order to reduce cardiac interference, each stimulus pulse is timed to be offset from the QRS signal which can interfere with the pancreas sensing. Additionally, the beta cell signals are processed by a correction circuit, e.g., an adaptive filter, to remove QRS artifacts, as well as artifacts from other sources, such as respiration.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: May 6, 2003
    Assignee: Medtronic, Inc.
    Inventors: Richard P. M. Houben, Alexis C. M. Renirie, Koen J. Weijand
  • Patent number: 6558734
    Abstract: This invention relates to methods for preparing articles having modified surfaces. Preferably the articles are medical devices. Preferably the surfaces are elastomeric. Preferably the articles having modified surfaces are useful for immobilizing biologically active agents on the surfaces.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: May 6, 2003
    Assignee: Medtronic, Inc.
    Inventors: Edouard Koulik, Cahalan T. Patrick, Hiroo Iwata
  • Patent number: 6556859
    Abstract: A system for a method of classifying distinct signals sensed from an electrode of an implantable cardiac pacing system positioned within an atrium of a heart of a patient is disclosed. The cardiac pacing system includes a pulse generator for generating pacing pulses and a controller for controlling the operation of a pacemaker. The method includes collecting atrial event signals consisting of P-wave signals and far field R-wave signals. An interim form factor histogram is generated based upon a form of collected atrial event signals. The interim form factor histogram includes an interim P-wave form factor histogram and an interim far field R-wave form factor histogram, each having bins of atrial event signals. A previously generated form factor histogram is weighted and combined with the interim form factor histogram to create a representative form factor histogram.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: April 29, 2003
    Assignee: Medtronic, Inc.
    Inventors: Peter W. Wohlgemuth, Dave Munneke, Gustaaf Stoop, Henk Westendorp, Mattias Rouw