Patents Represented by Attorney James L. Clingan, Jr.
  • Patent number: 7811889
    Abstract: A fin field effect transistor (FinFET) memory cell and method of formation has a substrate for providing mechanical support. A first dielectric layer overlies the substrate. A fin structure overlies the dielectric layer and has a first current electrode and a second current electrode separated by a channel. A floating gate has a vertical portion that is adjacent to and electrically insulated from a side of the channel and has a horizontal portion overlying the first dielectric layer and extending laterally away from the channel. The floating gate stores electrical charge. A second dielectric layer is adjacent the floating gate. A control gate adjacent the second dielectric layer and physically separated from the floating gate by the second dielectric layer. The “L-shape” of the floating gate enhances capacitive coupling ratio between the control gate and the floating gate.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: October 12, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Vishal P. Trivedi, Leo Mathew
  • Patent number: 7804701
    Abstract: An array of memory cells is arranged in a plurality of columns and rows, each of the memory cells including a programmable fuse connected to a predetermined bit line and in series with a select transistor. The select transistor has a first current electrode connected to a reference voltage terminal, a control electrode connected to a predetermined word line, and a second current electrode connected to the programmable fuse. The select transistor further has a semiconductor body adjacent to which the first current electrode and the second current electrode are located. These electrodes are separated by a channel. A signal terminal that is connected to the semiconductor body receives an input signal to forward bias the channel to the first current electrode during programming of the programmable fuse to increase a programming current of the programmable fuse.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: September 28, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Alexander Hoefler
  • Patent number: 7799650
    Abstract: A method for forming a semiconductor device on a semiconductor material layer includes forming a gate structure over the semiconductor material layer. The method further includes forming a first nitride spacer adjacent to the gate structure and forming source/drain extensions in the semiconductor material layer. The method further includes forming an oxide liner overlying the gate structure and the source/drain extensions. The method further includes forming a second nitride spacer adjacent to the oxide liner. The method further includes forming source/drain regions in the semiconductor material layer. The method further includes using an etching process that is selective to the oxide liner, removing the second nitride spacer. The method further includes using an etching process that is selective to the first nitride spacer, at least partially removing the oxide liner. The method further includes forming silicide regions overlying the source/drain regions and the gate structure.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 21, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xiangzheng Bo, Venkat R. Kolagunta, Konstantin V. Loiko
  • Patent number: 7791367
    Abstract: An integrated circuit is configured to be in a calibration mode of operation to establish a desired output impedance of a driver circuit. A predetermined constant voltage is established at a circuit node within the integrated circuit. A calibration current is conducted through a transistor connected in series with a variable value resistance in the integrated circuit at the circuit node. A resistance value of the variable value resistance is varied to establish a value of the calibration current which establishes the desired output impedance. The calibration mode is exited and a functional mode is entered. A calibrated resistance value is used during the functional mode of operation. The calibration current is conducted as a calibrated current through the transistor and calibrated resistance value. Variation of the calibrated current is corrected in response to voltage and process variations to maintain the calibrated current and output impedance of the driver circuit.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 7, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Perry H. Pelley
  • Patent number: 7793172
    Abstract: Methods and systems for configuring characteristics associated with at least one portion of a memory array comprising addressable units are provided. In one aspect, a method for controlling a power supply voltage for a memory array comprises detecting whether an error occurred in performing a read operation on an addressable unit of the memory array using a first power supply voltage coupled to the memory array. The method further comprises incrementing an error counter for tracking an error count associated with the memory array and switching the memory array to a second power supply voltage if the error count is equal to or exceeds an error threshold for the memory array. The method further comprises, based on at least one condition, switching the memory array to the first power supply voltage and resetting the error counter to an initial value.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 7, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Klas M. Bruce, Andrew C. Russell, Shayan Zhang, Bradford L. Hunter
  • Patent number: 7781840
    Abstract: Two different transistors types are made on different crystal orientations in which both are formed on SOI. A substrate has an underlying semiconductor layer of one of the crystal orientations and an overlying layer of the other crystal orientation. The underlying layer has a portion exposed on which is epitaxially grown an oxygen-doped semiconductor layer that maintains the crystalline structure of the underlying semiconductor layer. A semiconductor layer is then epitaxially grown on the oxygen-doped semiconductor layer. An oxidation step at elevated temperatures causes the oxide-doped region to separate into oxide and semiconductor regions. The oxide region is then used as an insulation layer in an SOI structure and the overlying semiconductor layer that is left is of the same crystal orientation as the underlying semiconductor layer. Transistors of the different types are formed on the different resulting crystal orientations.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: August 24, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Alexander L. Barr, Bich-Yen Nguyen, Marius K. Orlowski, Mariam G. Sadaka, Voon-Yew Thean
  • Patent number: 7772584
    Abstract: A semiconductor device has lateral conductors or traces that are formed of nanotubes such as carbon. A sacrificial layer is formed overlying the substrate. A dielectric layer is formed overlying the sacrificial layer. A lateral opening is formed by removing a portion of the dielectric layer and the sacrificial layer which is located between two columns of metallic catalysts. The lateral opening includes a neck portion and a cavity portion which is used as a constrained space to grow a nanotube. A plasma is used to apply electric charge that forms an electric field which controls the direction of formation of the nanotubes. Nanotubes from each column of metallic catalyst are laterally grown and either abut or merge into one nanotube. Contact to the nanotube may be made from either the neck portion or the columns of metallic catalysts.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: August 10, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Shahid Rauf, Peter L. G. Ventzek
  • Patent number: 7772048
    Abstract: A semiconductor device is made by steps of removing portions of a first capping layer, removing portions of a sacrificial layer, recessing sidewalls, and forming fin structures. The step of removing portions of the first capping layer forms a first capping structure that covers portions of the sacrificial layer. The step of removing portions of the sacrificial layer removes portions of the sacrificial layer that are not covered by the first capping structure to define an intermediate structure. The step of recessing the sidewalls recesses sidewalls of the intermediate structure relative to edge regions of the first capping structure to form a sacrificial structure having recessed sidewalls. The step of forming fin structures forms fin structures adjacent to the recessed sidewalls.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: August 10, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Robert E. Jones, Rickey S. Brownson
  • Patent number: 7764550
    Abstract: A memory system including non-volatile memory cells. The memory system includes program circuitry that programs cells to a first threshold voltage or a second threshold voltage based on the number of times that cells of the memory system have been erased. In one embodiment, the threshold voltage is reduced when any set of cells of the memory system have been erased a specific number of times.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: July 27, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mohammed Suhail, Frank K. Baker, Jr., Gowrishankar L. Chindalore
  • Patent number: 7750465
    Abstract: A packaged integrated circuit has an integrated circuit over a support structure. A plurality of bond wires connected between active terminals of the integrated circuit and the support structure. An encapsulant overlies the support structure, the integrated circuit, and the bond wires. The encapsulant has a first open location in the encapsulant so that a first bond wire is exposed and a second open location in the encapsulant so that a second bond wire is exposed. First and second conductive structures are exposed outside the packaged integrated circuit and are located at the first and second open locations, respectively, and electrically connected to the first and second bond wires, respectively.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: July 6, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kevin J. Hess, Chu-Chung Lee
  • Patent number: 7745870
    Abstract: A floating gate memory cell has a floating gate in which there are two floating gate layers. The top layer is etched to provide a contour in the top layer while leaving the lower layer unchanged. The control gate follows the contour of the floating gate to increase capacitance therebetween. The two layers of the floating gate can be polysilicon separated by a very thin etch stop layer. This etch stop layer is thick enough to provide an etch stop during a polysilicon etch but preferably thin enough to be electrically transparent. Electrons are able to easily move between the two layers. Thus the etch of the top layer does not extend into the lower layer but the first and second layer have the electrical effect for the purposes of a floating gate of being a continuous conductive layer.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gowrishankar L. Chindalore, Craig T. Swift
  • Patent number: 7745298
    Abstract: A method for forming a via includes forming a gate electrode over a semiconductor substrate, forming a source/drain region in the semiconductor substrate adjacent the gate electrode, forming a silicide region in the source/drain region, forming a post-silicide spacer adjacent the gate electrode after forming the silicide region, forming an interlayer dielectric layer over the gate electrode, the post-silicide spacer, and the silicide region, and forming a conductive via in the interlayer dielectric layer, extending to the silicide region.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: June 29, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tab A. Stephens, Olubunmi O. Adetutu, Paul A. Grudowski, Matthew T. Herrick
  • Patent number: 7741183
    Abstract: A method of forming a semiconductor device includes providing a substrate for the semiconductor device. A base oxide layer is formed overlying the substrate by applying a rapid thermal oxidation (RTO) of the substrate in the presence of oxygen. A nitrogen-rich region is formed within and at a surface of the base oxide layer. The nitrogen-rich region overlies an oxide region in the base oxide layer. Afterwards, the semiconductor device is annealed in a dilute oxygen and hydrogen-free ambient of below 1 Torr partial pressure of the oxygen. The annealing heals bond damage in both the oxide region and the nitrogen-rich region in the base oxide layer. After annealing the semiconductor device in the dilute oxygen ambient, in-situ steam generation (ISSG) is used to grow and density the oxide region in the base oxide layer at an interface between the substrate and base oxide layer.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: June 22, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tien Ying Luo, Ning Liu, Mohamed S. Moosa
  • Patent number: 7736957
    Abstract: A method for forming a semiconductor device includes providing a semiconductor substrate; forming a gate dielectric over the semiconductor substrate; forming a gate electrode over the gate dielectric; forming an insulating layer over a sidewall of the gate electrode; defining source and drain regions in the semiconductor substrate adjacent to the insulating layer; implanting a dopant in the source and drain regions of the semiconductor substrate to form doped source and drain regions; forming a sidewall spacer adjacent to the insulating layer; forming a recess in the semiconductor substrate in the source and drain regions, wherein the recess extends directly underneath the spacer a predetermined distance from a channel regions; and forming a stressor material in the recess. The method allows the stressor material to be formed closer to a channel region, thus improving carrier mobility in the channel while not degrading short channel effects.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: June 15, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul A. Grudowski, Veeraraghavan Dhandapani, Darren V. Goedeke, Voon-Yew Thean, Stefan Zollner
  • Patent number: 7732278
    Abstract: A split gate memory cell has a select gate, a control gate, and a charge storage structure. The select gate includes a first portion located over the control gate and a second portion not located over the control gate. In one example, the first portion of the select gate has a sidewall aligned with a sidewall of the control gate and aligned with a sidewall of the charge storage structure. In one example, the control gate has a p-type conductivity. In one example, the gate can be programmed by a hot carrier injection operation and can be erased by a tunneling operation.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: June 8, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Michael A. Sadd, Robert F. Steimle
  • Patent number: 7727870
    Abstract: A method for forming a semiconductor device includes providing a substrate and forming a p-channel device and an n-channel device, each of the p-channel device and the n-channel device comprising a source, a drain, and a gate, the p-channel device having a first sidewall spacer and the n-channel device having a second sidewall spacer. The method further includes forming a liner and forming a tensile stressor layer over the liner and removing a portion of the tensile stressor layer from a region overlying the p-channel device. The method further includes transferring a stress characteristic of an overlying portion of a remaining portion of the tensile stressor layer to a channel of the n-channel device. The method further includes using the remaining portion of the tensile stressor layer as a hard mask, forming a first recess and a second recess adjacent the gate of the p-channel device.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: June 1, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Xiangzheng Bo, Venkat R. Kolagunta
  • Patent number: 7718485
    Abstract: An integrated circuit that has logic and a static random access memory (SRAM) array has improved performance by treating the interlayer dielectric (ILD) differently for the SRAM array than for the logic. The N channel logic and SRAM transistors have ILDs with non-compressive stress, the P channel logic transistor ILD has compressive stress, and the P channel SRAM transistor at least has less compressive stress than the P channel logic transistor, i.e., the P channel SRAM transistors may be compressive but less so than the P channel logic transistors, may be relaxed, or may be tensile. It is beneficial for the integrated circuit for the P channel SRAM transistors to have a lower mobility than the P channel logic transistors. The P channel SRAM transistors having lower mobility results in better write performance; either better write time or write margin at lower power supply voltage.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: May 18, 2010
    Assignee: Freescale Semiconductor, Inc,
    Inventors: James D. Burnett, Jon D. Cheel
  • Patent number: 7704830
    Abstract: A self-aligned split gate bitcell includes first and second regions of charge storage material separated by a gap devoid of charge storage material. Spacers are formed along sidewalls of sacrificial layer extending above and on opposite sides of the bitcell stack, wherein the spacers are separated from one another by at least a gap length. Etching the bitcell stack, selective to the spacers, forms a gap that splits the bitcell stack into first and second gates which together form the split gate bitcell stack. A storage portion of bitcell stack is also etched, wherein etching extends the gap and separates the corresponding layer into first and second separate regions, the extended gap being devoid of charge storage material. Dielectric material is deposited over the gap and etched back to expose a top surface of the sacrificial layer, which is thereafter removed to expose sidewalls of the split gate bitcell stack.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: April 27, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Tushar P. Merchant, Ramachandran Muralidhar, Lakshmanna Vishnubhotla
  • Patent number: 7700420
    Abstract: A substrate includes a first region and a second region. The first region comprises a III-nitride layer, and the second region comprises a first semiconductor layer. A first transistor (such as an n-type transistor) is formed in and on the III-nitride layer, and a second transistor (such as a p-type transistor) is formed in and on the first semiconductor layer. The III-nitride layer may be indium nitride. In the first region, the substrate may include a second semiconductor layer, a graded transition layer over the second semiconductor layer, and a buffer layer over the transition layer, where the III-nitride layer is over the buffer layer. In the second region, the substrate may include the second semiconductor layer and an insulating layer over the second semiconductor layer, where the first semiconductor layer is over the insulating layer.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: April 20, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Bich-Yen Nguyen, Mariam G. Sadaka, Victor H. Vartanian, Ted R. White
  • Patent number: 7701785
    Abstract: A memory including a data line, a sense amplifier, and an array of memory cells. The memory includes a transistor for coupling the data line to memory cells of the array for reading. The transistor is biased at a voltage that is higher than a voltage that the data line is biased during precharging. The transistor is part of a regulation circuit. The regulation circuit includes transistors with a higher dielectric breakdown voltage than transistors of the sense amplifier.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 20, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Padmaraj Sanjeevarao, Tahmina Akhter, David W. Chrudimsky