Patents Represented by Attorney Mary Louise Gioeni
  • Patent number: 8039125
    Abstract: Organic compounds of formula I may be used in optoelectronic devices wherein R1 is, independently at each occurrence, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; R2 is, independently at each occurrence, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; a is, independently at each occurrence, an integer ranging from 0-4; b is, independently at each occurrence, an integer ranging from 0-3; Ar1 is a direct bond or heteroaryl, aryl, or alkyl or cycloalkyl; Ar2 is heteroaryl, aryl, or alkyl or cycloalkyl; c is 0, 1 or 2; and n is an integer ranging from 2-4.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: Qing Ye, Yangang Liang, Shengxia Liu, Kelly Scott Chichak, Jie Liu
  • Patent number: 8039543
    Abstract: A composition includes a first cylcoolefin substituted with at least one epoxy group and an aromatic amine. The composition is capable of bonding to a filler having a corresponding binding site. The composition is compatible with a metathesis catalyst capable of catalyzing a ring-opening metathesis polymerization reaction when contacted with the first cycloolefin. An associated method is also provided.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: Xiaolan Wei, Wendy Wen-Ling Lin, Warren Rosal Ronk
  • Patent number: 8038867
    Abstract: A device includes a first electrode and a second electrode spaced from the first electrode to define a volume. An anion exchange membrane and a cation exchange membrane are disposed within the volume. A controller controls a supply of electrical current from an electrical source to the first electrode and to the second electrode. The electrical current supply is controlled to switch from a first mode of operation to a second mode of operation providing electrical current having a reverse polarity during each cycle. The electrical current is supplied at a controlled cycle rate and for a controlled duration. The cycle rate is greater than about 100 hertz and less than about 10 kilohertz.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: Yu Du, Yunfeng Liu, Saijun Mao, Xiaoming Yuan, Chao Yang, Rihua Xiong, Chun Cao, Shengxian Wang, Wei Cai, Chang Wei, Jiyang Xia
  • Patent number: 8025789
    Abstract: An electrochemical method for measuring the concentration of an anionically-charged and non-electroactive polymer in an aqueous solution is provided. The method comprises immobilizing a cationic dye material on an electrically conductive substrate form a working electrode; contacting the working electrode with the aqueous solution including the anionically-charged and non-electroactive polymer to be measured, and transmitting electrical power to the working electrode; measuring a current of the working electrode under a determined electric potential; and calculating a concentration or quantity of the anionically-charged polymer in the aqueous solution according to the measured current of the working electrode.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: September 27, 2011
    Assignee: General Electric Company
    Inventors: Jianyun Liu, Zhixin Zheng, Yangang Liang, Wei Cai, Su Lu, Li Zhang
  • Patent number: 8022623
    Abstract: The present techniques provide methods and systems for forming devices that may be formed from light emitting regions of electroluminescent organic materials. The small size of the light emitting regions allows the formation of blended colors, which may be formed into illuminated designs. Multiple devices may be joined together to form multilayer panels, where nearer layers may have different designs than farther layers, or farther layers may have solid illuminated colors useful as backgrounds for nearer layers. Further, the multilayer devices may be used as color tunable light sources.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: September 20, 2011
    Assignee: General Electric Company
    Inventors: Svetlana Rogojevic, Gautam Parthasarathy
  • Patent number: 8003012
    Abstract: The current invention provides a persistent phosphor blend, along with techniques for making and using the blend. The persistent phosphor blend is made of at least one persistent phosphor combined with at least one other phosphor, where the excitation spectra of the one or more other phosphors overlap the emission spectra of the one or more persistent phosphors. The choice of the phosphors used allows the decay time and emission colors to be tuned for the specific application. In another embodiment, the invention provides a method for making persistent phosphor blends with tunable colors. In yet another embodiment, applications for such a persistent phosphor blend are provided.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 23, 2011
    Assignee: General Electric Company
    Inventors: Holly Ann Comanzo, Alok Mani Srivastava, William Winder Beers, Anant Achyut Setlur, Claire Susan Henderson
  • Patent number: 7994238
    Abstract: An article includes a reaction product of a filler having binding sites, a coupling agent composition including an aromatic amine and a first cycloolefin substituted with at least one epoxy group, a polymer precursor including a second cycloolefin, and a metathesis catalyst capable of catalyzing a ring-opening metathesis polymerization reaction when contacted to the first cycloolefin or the second cycloolefin. The coupling agent composition is capable of bonding to the filler and the coupling agent composition is compatible with a metathesis catalyst. An associated method is also provided.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: August 9, 2011
    Assignee: General Electric Company
    Inventors: Wendy Wen-Ling Lin, Scott Roger Finn, Warren Rosal Ronk, Xiaolan Wei, Rachel Marie Suffield
  • Patent number: 7989476
    Abstract: Compound of formula C is made by reacting a compound of formula A with an pyridyl boronic acid or pyridyl borate ester to form a compound of formula B; and combining the compound of formula B with a pyridyl dihalide to form the compound of C; wherein R3, R4, R5, R6 and R7 are, independently at each occurrence, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; X is, independently at each occurrence, CH or N; Y is chloro or bromo; Z is bromo or iodo; and when Y is bromo, Z is iodo; d, e, and g are, independently at each occurrence, an integer ranging from 0-4; f is an integer ranging from 0-2; and h is an integer ranging from 0-3.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Kelly Scott Chichak, Qing Ye, Yangang Liang, Shengxia Liu, Rui Wang
  • Patent number: 7989580
    Abstract: Metal complexes of formula I and IA and polymers derived from the complexes are useful in optoelectronic devices wherein M is Ir, Co or Rh; is a cyclometallated ligand; R1 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl; R2 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl; and at least one of R1 and R2 is other than hydrogen; R1a is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl; R2a is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl; and at least one of R1a and R2a is substituted alkyl, substituted aryl, substituted arylalkyl, and at least one substitutent of the substituted alkyl, substituted aryl, or substituted arylalkyl is a polymerizable group.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Kyle Erik Litz, Kelly Scott Chichak, Donald Wayne Whisenhunt, Jr.
  • Patent number: 7976899
    Abstract: Embodiments of the invention include a selective deposition method that allows for coating of selective portions of an object, such as an electronic device, and inhibits coating of other selective portions of the object, such as the electric contacts. The selective deposition method includes providing a web to transport the object through a deposition chamber. The web may include and reference mechanisms to register the object relative to the web. The method further includes providing deposition material and a shadow mask that has open spaces in it to inhibit coating selective portions of the object. The deposition material serves as the coating material.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Min Yan, Ahmet Gun Erlat, Paul Alan McConnelee, Anil Raj Duggal, Svetlana Rogojevic
  • Patent number: 7977451
    Abstract: Membranes for use in methods and apparatuses for hemodialysis and hemofiltration are composed of at least one membrane comprising a polyarylethernitrile having structural units of formula 1, 2, 3 and 4 wherein Z is a direct bond, O, S, CH2, SO, SO2, CO, RPO, CH2, alkenyl, alkynyl, a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical or a combination thereof; R is a C6-12 aromatic radical or a C1-12 aliphatic radical; R1 and R2 are independently H, halo, nitro, a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, a C3-C12 aromatic radical, or a combination thereof; a is 0, 1, 2 or 3; b is 0, 1, 2, 3 or 4; m and n are independently 0 or 1; and Q and Z are different.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Daniel Steiger, Gary William Yeager, Yanshi Zhang
  • Patent number: 7976908
    Abstract: Processes for simultaneously encapsulating multiple optoelectronic devices and/or depositing a barrier film onto multiple substrates suitable for fabrication of optoelectronic devices thereon include the use of a plasma deposition apparatus having multiple pairs of opposing electrodes for deposition of reactants onto the substrate that is used to form the device or the complete device itself. The processes significantly reduce tact time relative to one at a time batch processing that is currently used for manufacturing optoelectronic devices.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, Anil Raj Duggal, Min Yan
  • Patent number: 7977641
    Abstract: A scintillator is provided, comprising: a composition of formula (Lu1-x-y-zCexInyM1z)2SiO5, wherein M1 is Y, Sc, Gd, or a combination thereof; 0.00001<x<0.05; 0.000001<y<0.1; and 0<=z<0.999989. A detecting device comprising a crystalline structure of the above scintillator is also provided. A method of detecting energy with the above detecting device is provided, comprising: receiving radiation by the scintillator; and detecting photons with a photon detector coupled to the scintillator.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Wusheng Xu, Zhongshi Liu, Qun Deng
  • Patent number: 7974076
    Abstract: A desalination system and method of desalinating liquids are provided. The desalination system includes a supercapacitor desalination unit. A first liquid source to be desalinated is provided to the supercapacitor desalination unit while the system is in a charging mode of operation. A second liquid source comprising saturated or supersaturated liquid is provided to the supercapacitor desalination unit when the system is in a discharging mode of operation.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: July 5, 2011
    Assignee: General Electric Company
    Inventors: Rihua Xiong, Wei Cai, Lei Cao, Chang Wei, Yu Du, Philip Mathew Rolchigo
  • Patent number: 7973126
    Abstract: Polymers including at least one structural unit derived from a compound of formula I or including at least one pendant group of formula II may be used in optoelectronic devices wherein R1, R3, R4 and R6 are independently hydrogen, alkyl, alkoxy, oxaalkyl, alkylaryl, aryl, arylalkyl, heteroaryl, substituted alkyl; substituted alkoxy, substituted oxaalkyl, substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted heteroaryl; R1a is hydrogen or alkyl; R2 is alkylene, substituted alkylene, oxaalkylene, CO, or CO2; R2a is alkylene; R5 is independently at each occurrence hydrogen, alkyl, alkylaryl, aryl, arylalkyl, alkoxy, carboxy, substituted alkyl; substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted alkoxy, X is halo, triflate, —B(OR1a)2, or ?located at the 2, 5- or 2, 7-positions; and L is derived from phenylpyridine, tolylpyridine, benzothienylpyridine, phenylisoquinoline, dibenzoquinozaline, fluorenylpyridine, ketopyrrole, 2-(1-naphthyl)benzo
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 5, 2011
    Assignee: General Electric Company
    Inventors: Joseph John Shiang, Kelly Scott Chichak, James Anthony Cella, Larry Neil Lewis, Kevin Henry Janora
  • Patent number: 7968004
    Abstract: Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 28, 2011
    Assignee: General Electric Company
    Inventors: James Anthony Cella, Joseph John Shiang, Elliott West Shanklin, Paul Michael Smigelski, Jr.
  • Patent number: 7966331
    Abstract: A method and system for assessing and optimizing crude selection are provided. A predictive engine uses data from a database to execute at least one predictive performance model and/or at least one risk assessment model designed to optimize or improve refining operations during a refining process. The predictive engine takes as input key crude information corresponding to a particular crude or crude blend, e.g., at least one crude slate, and refinery operating parameters and/or conditions corresponding to a specific refinery and uses desirability metrics to assess the similarity to data in the database. Based on the resulting output, at least one predictive performance and/or at least one risk assessment model uses the output to predict performance or risk measures of refining the particular crude or crude blend using the specific refinery during the refining process, the probability of problems occurring during the refining process, the distribution of the problems throughout the refining process, etc.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: June 21, 2011
    Assignee: General Electric Company
    Inventors: Martha Gardner, Rajesh Tyagi, Thomas Repoff, Abhinanda Sarkar, Angshuman Saha, Shirley Au, Roy Wilson, Malcolm Craig Winslow, Michael Dion
  • Patent number: 7959827
    Abstract: A long-lived phosphor composition is provided, along with methods for making and using the composition. More specifically, in one embodiment, the phosphor comprises a material having a formula of Ax-y-zAl2-m-n-o-pO4:Euy, REz, Bm, Znn, Coo, Scp. In this formula, A may be Ba, Sr, Ca, or a combination of these metals, x is between about 0.75 and 1.3, y is between about 0.0005 and 0.1, z is between about 0.0005 and 0.1, m is between about 0.0005 and 0.30, n is between about 0.0005 and 0.10, o is between about 0 and 0.01 and p is between about 0 and 0.05. RE is Dy, Nd, or a combination thereof. In another embodiment, methods are provided for making persistent phosphors comprising the formulations above. Other embodiments provide applications for such a phosphor, comprising uses in toys, emergency equipment, clothing, and instrument panels, among others.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: June 14, 2011
    Assignee: General Electric Company
    Inventors: Holly Ann Comanzo, Alok Mani Srivastava, William W. Beers, Sergio Paulo Martins Loureiro, Anant Achyut Setlur, Stanley John Stoklosa, Claire S. Henderson
  • Patent number: 7948163
    Abstract: The present invention is directed to a method for producing white light. The method includes applying a voltage to an organic light emitting device including a light emissive layer directly adjacent to a layer comprising at least one small molecule material capable of hole blocking and electron transport, the light emissive layer including at least one blue light emissive polymer, where the at least one small molecule material and the at least one blue light emissive polymer form a light emissive exciplex at or near an interface of the light emissive layer and the layer including the at least one small molecule material.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: May 24, 2011
    Assignee: General Electric Company
    Inventors: Gautam Parthasarathy, Christian Maria Anton Heller
  • Patent number: 7944148
    Abstract: A radiation source is presented, the source comprising an ionizable mercury-free composition that comprises tin halide such that the halide to tin ratio is greater than 2.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 17, 2011
    Assignee: General Electric Company
    Inventors: David John Smith, Timothy John Sommerer, Joseph Darryl Michael