Patents Represented by Attorney Mary Louise Gioeni
  • Patent number: 7910012
    Abstract: A composition is provided. The composition may include a reaction product of a first composition having two or more anhydride moieties, a second composition having two or more hydroxyl moieties, and a third composition having at least one aziridine moiety. A method for forming a membrane from the composition is provided. A membrane formed from the composition is provided. Devices that include the membrane are provided, also.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: March 22, 2011
    Assignee: General Electric Company
    Inventors: Gary William Yeager, Sharon Oba, Anatoli Kogan, Hua Wang
  • Patent number: 7906568
    Abstract: A composition includes a coupling agent composition and a polymer precursor. The coupling agent composition includes an aromatic amine and a first cycloolefin substituted with at least one epoxy group. The polymer precursor includes a second cycloolefin and an epoxy compound. The coupling agent composition is capable of bonding to a filler having a corresponding binding site and the coupling agent composition is compatible with a metathesis catalyst capable of catalyzing a ring-opening metathesis polymerization reaction when contacted to the first cycloolefin or the second cycloolefin. An associated method is also provided.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 15, 2011
    Assignee: General Electric Company
    Inventors: Xiaolan Wei, Wendy Wen-Ling Lin, Warren Rosal Ronk
  • Patent number: 7896949
    Abstract: Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200° C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: March 1, 2011
    Assignee: General Electric Company
    Inventors: Anthony Yu-Chung Ku, James Anthony Ruud, Vidya Ramaswamy, Patrick Daniel Willson, Yan Gao
  • Patent number: 7893617
    Abstract: An all-metal electron emissive structure for low-pressure lamps is disclosed. The all-metal electron emissive structure consisting of one or more metal is operable to emit electrons in response to a thermal excitation, wherein an active region of the electron emissive structure under steady state operating conditions has a temperature greater than about 1500 degree K, and wherein the cathode fall voltage in the discharge medium under steady state operating conditions is less than about 100 volts. A lamp including an envelope, an electrode including the all-metal electron emissive structure, and a medium, is also disclosed.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: Timothy John Sommerer, David John Smith
  • Patent number: 7884550
    Abstract: A transparent sintered yttrium aluminum garnet ceramic material formed from a solid-state reaction of a mixture of yttrium oxide powder and aluminum oxide powder during sintering. The ceramic material preferably has an in-line transmission of greater than 75% so it may used to fabricate arc tubes for high intensity discharge lamps used in automotive headlamps.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: February 8, 2011
    Assignee: General Electric Company
    Inventors: Gregory M. Gratson, James A. Brewer, Venkat S. Venkataramani, Mohamed Rahmane, Svetlana Selezneva, Sairam Sundaram
  • Patent number: 7851985
    Abstract: An article is provided including a heating element and a high temperature coating coated on the heating element. The high temperature coating comprises a first region and a second region arranged in a structure such that the first and second regions maintain a periodicity of distribution between about 100 nm and about 1000 nm. Furthermore, the first region includes a first material selected from the group consisting of carbides of transition metals, nitrides of transition metals, and borides of transition metals.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: December 14, 2010
    Assignee: General Electric Company
    Inventors: Timothy John Sommerer, Peter Joel Meschter, Vikas Midha, William Paul Minnear, David Jeffrey Bryan
  • Patent number: 7851579
    Abstract: Compositions comprising at least one phosphorescent organometallic compound and a polymer comprising structural units of formula II are useful in organic light emitting devices wherein R1, R2, and R4 are independently at each occurrence a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; wherein R3 and R5 are independently selected from the group consisting of hydrogen, triphenylsilyl, t-butyl, mesityl, diphenyl phosphine oxide, and diphenyl phosphine sulfide; and a, b and d are independently 0 or an integer ranging from 1 to 3.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: December 14, 2010
    Assignee: General Electric Company
    Inventors: Qing Ye, Jie Liu, Kyle Erik Litz
  • Patent number: 7847484
    Abstract: An ionizable mercury-free and sodium-free composition is capable of emitting radiation if excited. A radiation source includes such an ionizable mercury-free and sodium-free composition. The ionizable mercury-free and sodium-free composition includes at least a metal, a metal and a metal compound, or a metal compound.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: December 7, 2010
    Assignee: General Electric Company
    Inventors: David John Smith, Timothy John Sommerer, Joseph Darryl Michael, Vikas Midha, George Michael Cotzas
  • Patent number: 7839089
    Abstract: A system and method for hermetically sealing a lamp. Certain embodiments of the lamp have an arc envelope having an open end and, also, an end structure diffusion bonded to the arc envelope at the open end. The end structure also has a dosing passageway extending into the arc envelope. In other embodiments, a lighting device is provided with an end structure adapted to close an open end of an arc envelope, and a dosing tube diffusion bonded to the end structure. Another embodiment of the lighting device has an arc envelope and an end structure diffusion bonded to an open end of the arc envelope.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: November 23, 2010
    Assignee: General Electric Company
    Inventors: Bernard P. Bewlay, James A. Brewer, Sylvain S. Coulombe, Sylvia M. DeCarr, Luana E. Lorio, Anteneh Kebbede, Timothy J. Sommerer, James S. Vartuli
  • Patent number: 7829652
    Abstract: A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: November 9, 2010
    Assignee: General Electric Company
    Inventors: Joyce Hung, Daniel Joseph Brunelle, Marianne Elisabeth Harmon, David Roger Moore, Joshua James Stone, Hongyi Zhou, Joseph Anthony Suriano
  • Patent number: 7830081
    Abstract: Optoelectronic devices include polysiloxanes derived from hydrosilation of an organometallic compound of formula L2MZ, wherein L and Z are independently bidentate ligands; at least one of L and Z comprises alkenyl, alkenylaryl, alkenyloxy, alkenyloxyaryl, alkynyl, alkynylaryl, alkynyloxy, alkynyloxyaryl, substituted alkenyl, substituted alkenylaryl, substituted alkenyloxy, substituted alkenyloxyaryl, substituted alkynyl, substituted alkynylaryl, substituted alkynyloxy, substituted alkynyloxyaryl, acrylate, methacrylate, or a combination thereof; and M is Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Ga, Ge, In, Sn, Sb, Tl, Pd, Bi, Po, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: November 9, 2010
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Kelly Scott Chichak, James Anthony Cella, Joseph John Shiang
  • Patent number: 7820124
    Abstract: A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: October 26, 2010
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor, Shweta Saraswat
  • Patent number: 7820428
    Abstract: A field deployable optical assembly for use in testing a light-responsive sample is disclosed. The assembly includes a microfluidic device, a first optical package, and a second optical package. The first optical package includes a light emitting diode (LED), a first optical device, and a first light-path control, the first optical package configured to guide and focus light from the LED onto the sample. The microfluidic device includes a tethered control substance. In response to a substance within the sample being associated with, and attaching to, the tethered control, the sample emits light. The second optical package includes a photo sensor, a second optical device, and a second light-path control, the second optical package configured to guide and focus the light emitted from the sample onto the photo sensor.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 26, 2010
    Assignee: General Electric Company
    Inventors: Steven Tysoe, Eugene Barash, Thomas Stecher
  • Patent number: 7813106
    Abstract: An electrode assembly is provided. The assembly includes a chargeable electrode configured to adsorb oppositely charged ions, where the electrode comprises a porous material. The assembly further includes an ion exchange material in contact with the porous material of the chargeable electrode, where the ion exchange material is similarly charged as the chargeable electrode, and where the ion exchange material is permeable to the oppositely charged ions and at least partially impermeable to the similarly charged ions.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 12, 2010
    Assignee: General Electric Company
    Inventors: Wei Cai, Chang Wei, Lei Cao, Rihua Xiong, Su Lu, Yu Du, Zhigang Deng
  • Patent number: 7781031
    Abstract: A composite article comprising a substrate and method for making the composite article are provided. A barrier layer is disposed on at least one surface of the substrate, wherein the barrier layer comprises a barrier coating and at least one repair coating disposed on the barrier coating. The repair coating is a conformal coating and comprises a metal or a metal based compound. An electroactive device and in one particular embodiment a light emitting device comprising the composite article are also provided. In another embodiment the invention comprises a barrier layer disposed on at least one surface of a substrate; wherein the barrier layer comprises a barrier coating and at least one repair coating.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: August 24, 2010
    Assignee: General Electric Company
    Inventors: Eric Michael Breitung, Ahmet Gun Erlat, Larry Neil Lewis
  • Patent number: 7768210
    Abstract: A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: August 3, 2010
    Assignee: General Electric Company
    Inventors: Joseph John Shiang, Anil Raj Duggal, Joseph Darryl Michael
  • Patent number: 7741140
    Abstract: Apparatus and methods for forming optoelectronic devices such as an array of light emitting diodes or photovoltaic cells in one embodiment a roll-to-roll process in which a uniquely configured roller having a raised spiral coating surface is aligned with a plurality of first electrodes disposed on an angle on a substrate for coating a plurality of spaced-apart angled coated strips of optoelectronic materials along the cross-web direction of the substrate.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Anil Raj Duggal, Hak Fei Poon, Svetlana Rogojevic
  • Patent number: 7741791
    Abstract: A system for providing a controllable current to a high intensity discharge lamp is provided. The system includes a current controller that is configured to receive input power and to provide an output current waveform to the high intensity discharge lamp. This current causes a discharge of light from the lamp. The output current waveform includes an absolute value amplitude in each half cycle that is generally constant during a first portion and that which increases non-linearly from the generally constant amplitude to a peak amplitude during a second portion.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Mohamed Rahmane, Eric Croquesel, Svetlana Selezneva
  • Patent number: 7740942
    Abstract: The invention provides an opto-electronic device comprising at least one sulfonated aromatic condensation copolymer or at least one phosphonated aromatic condensation copolymer. The at least one sulfonated aromatic condensation copolymer is selected from sulfonated polyarylethers, sulfonated polyimides, sulfonated polyphenylene oxides, sulfonated polyarylenes, sulfonated polyphosphazenes, and the at least one phosphonated aromatic condensation copolymer is selected from phosphonated polyarylethers, phosphonated polyimides, phosphonated polyphenylene oxides, phosphonated polyarylenes, phosphonated polyphosphazenes and combinations thereof. The sulfonated polyarylether is a sulfonated polyarylether block copolymer having sulfonated polyaryletherketone blocks, sulfonated polyethersulfone blocks, or combinations thereof.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Qing Ye, Jie Liu, Joyce Hung
  • Patent number: 7731866
    Abstract: Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 8, 2010
    Assignee: General Electric Company
    Inventors: James Anthony Cella, Joseph John Shiang, Elliott West Shanklin, Paul Michael Smigelski