Patents Represented by Attorney Robert A. Migliorini
  • Patent number: 7807098
    Abstract: The invention is related to a method for protecting a metal surface subject to erosion temperatures up to 850° C. The method comprises providing the metal surface with a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and binder phase (RS) wherein, P is at least one metal selected from the group consisting of Group IV, Group V, and Group VI elements, Q is boride, R is selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises Ti and at least one element selected from the group consisting of Cr, Al, Si and Y.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 5, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Narasimha-Rao Venkata Bangaru, ChangMin Chun, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Jayoung Koo, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
  • Patent number: 7759524
    Abstract: In a process for producing phenol and methyl ethyl ketone, benzene and a C4 olefin are contacted under alkylation conditions and in the presence of an alkylation catalyst to produce sec-butylbenzene. The sec-butylbenzene is then oxidized to produce an oxidation effluent comprising sec-butylbenzene hydroperoxide and acetophenone. At least part of the sec-butylbenzene hydroperoxide in the oxidation effluent is cleaved to produce phenol and methyl ethyl ketone, while at least part of the acetophenone is hydrogenated to produce at least one of methyl benzyl alcohol, styrene and ethylbenzene.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Scott Buchanan, Jihad Mohammed Dakka, Stephen Zushma, Francisco Manuel Benitez, Steven E. Silverberg
  • Patent number: 7759533
    Abstract: A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jane C. Cheng, Sal Miseo, Stuart L. Soled, John S. Buchanan, Jennifer S. Feeley
  • Patent number: 7731776
    Abstract: Multimodal cermet compositions comprising a multimodal grit distribution of the ceramic phase and method of making are provided by the present invention. The multimodal cermet compositions include a) a ceramic phase and b) a metal binder phase, wherein the ceramic phase is a metal boride with a multimodal distribution of particles, wherein at least one metal is selected from the group consisting of Group IV, Group V, Group VI elements of the Long Form of The Periodic Table of Elements and mixtures thereof, and wherein the metal binder phase comprises at least one first element selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, and at least second element selected from the group consisting of Cr, Al, Si and Y, and Ti.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: June 8, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao V. Bangaru, Neeraj S. Thirumalai, Hyun-Woo Jin, Jayoung Koo, John R. Peterson, Robert L. Antram, Christopher J. Fowler, Emery B. Lendvai-Lintner
  • Patent number: 7718564
    Abstract: The present invention is related to a hydrocarbon oxidation process. The process comprises bringing one or more hydrocarbons into contact with a source of oxygen in the presence of a radical initiator and a catalyst. The catalyst comprises an organic metal complex located on a catalyst support, and is obtained by partial decomposition of the organic metal complex. For example, the process can be used to produce dimethyl carbonate from dimethoxy methane. The invention is also related to a partially decomposed catalyst that comprises a silica support and an organic metal complex, wherein at least 5% of the organic compound remains in the catalyst. The organic metal complex comprises an organic compound and a metal-based compound wherein the metal is selected from copper, nickel, and combinations thereof.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: May 18, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jihad Mohammed Dakka, Sabato Miseo, Stuart Leon Soled, Jose Guadalupe Santiesteban, Joseph Ernest Baumgartner, Michiel Christian Alexander Van Vliet, Roger Arthur Sheldon
  • Patent number: 7686949
    Abstract: An improved hydrotreating process for use with lube oil boiling range feedstreams utilizing a catalyst comprising a hydrogenation-dehydrogenation component selected from the Group VIII noble metals and mixtures thereof, a mesoporous support, and a binder.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Jean W. Beeckman, Sylvain S. Hantzer, Geoffrey L. Woolery, Glenn R. Sweeten
  • Patent number: 7687580
    Abstract: The present invention relates to a method to produce highly branched polymers with a polyolefin backbone structure of ethylene and precise control of the nature of the branching. In particular, the distribution of branch length and number of branches can be more precisely controlled via the polymerization method of the present invention. The method comprises using anionic chemistry to make unsaturated polydienes with a well-defined, highly-branched structure, and then hydrogenating these polydienes to form highly branched or dendritic saturated hydrocarbon polymers. Highly branched or dendritic polyethylene, ethylene-propylene copolymer and atactic polypropylene are among the saturated hydrocarbon polymers that can be anionically synthesized via the proper selection of diene monomer type, coupling agent, and hydrogenation conditions.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David J. Lohse, César Garcia-Franco, Nikos Hadjichristidis
  • Patent number: 7682502
    Abstract: An improved hydrogenation process for lube oil boiling range feedstreams utilizing a catalyst comprising at least one Group VIII noble metal selected from Pt, Pd, and mixtures thereof having an average pore diameter of about 15 to less than about 40 ?.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 23, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenylh F. Lai, Jean W. Beeckman, Sylvain S. Hantzer
  • Patent number: 7662273
    Abstract: A process for producing lube oil basestocks wherein a wax containing lube oil boiling range feedstream is converted into a basestock suitable for use in motor oil applications by contacting it with a hydrodewaxing catalyst containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: February 16, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Murphy, Stuart L. Soled, Ian A. Cody, David W. Larkin, Terry E. Helton, Gary B. McVicker
  • Patent number: 7642095
    Abstract: A process for producing lube basestocks involving solvent dewaxing a waxy feed to produce at least a partially dewaxed lube oil boiling range stream and then hydrodewaxing the partially dewaxed lube oil boiling range stream to produce a lube basestock.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: January 5, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Cheng-Yu Wang, Lei Zhang
  • Patent number: 7641786
    Abstract: The invention relates to a method for analyzing a lubricating oil for low temperature properties. The method utilizes 2-dimensional gas chromatography (2D GC) to determine the amounts of paraffins and isoparaffins in the oil. In particular, the method analyzes for a particular isoparaffin fraction which is correlated to low temperature performance. The compositional information thus obtained is correlated with formulated oil Mini Rotary Viscometer (MRV) properties.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: January 5, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Cheng-Yu Wang, Lei Zhang
  • Patent number: 7638453
    Abstract: A catalyst composition containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals for use in hydrodewaxing lube oil boiling range feedstreams.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: December 29, 2009
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: William J. Murphy, Stuart L. Soled, Ian A. Cody, David W. Larkin, Terry E. Helton, Gary B. McVicker
  • Patent number: 7625115
    Abstract: The present invention relates to a method of dispensing accurately small amounts of high viscosity lubricant components using tubeless positive-displacement liquid-handling equipment for forming lubricant blends.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 1, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jason Zhisheng Gao, Alan Mark Schilowitz, Vera Minak-Bernero, Peter Calcavecchio
  • Patent number: 7625478
    Abstract: Blends of ZSM-48 catalysts are used for hydroprocessing of hydrocarbon feedstocks. The blend of ZSM-48 catalysts includes at least a portion of ZSM-48 crystals having a SiO2:Al2O3 ratio of 110 or less that are free of non-ZSM-48 seed crystals and have a desirable morphology.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: December 1, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Wenyih F. Lai, Terry E. Helton, Dominick N. Mazzone
  • Patent number: 7597795
    Abstract: A process for producing lube oil basestocks involving solvent extracting a waxy feed to produce at least a lube oil boiling range raffinate, hydrotreating the lube oil raffinate to produce a hydrotreated raffinate, and dewaxing the hydrotreated raffinate.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: October 6, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary P. Schleicher, Kenneth L. Riley, Elizabeth Stavens, Sylvain Hantzer
  • Patent number: 7594991
    Abstract: All catalytic process for producing white oils is provided. More particularly, medicinal grade white oils are produced from a process including hydrotreating and/or hydrocracking, catalytic dewaxing followed by hydrofinishing to produce a medicinal white oil.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 29, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sylvain S. Hantzer, Eric D. Joseck, Timothy L. Hilbert, Evelino A. Ruibal, Jean-Philippe L. Andre, Thomas R. Palmer, Michael B. Carroll
  • Patent number: 7592411
    Abstract: A liquid polymer suitable for use as a lubricant base oil is produced by polymerizing ethylene and at least one alpha-olefin using a metallocene catalyst to provide a polymer which is then isomerized and hydrogenated to produce the liquid polymer.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: September 22, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Margaret M. Wu, Steven P. Rucker, Richard T. Spissell, Steven E. Donnachie
  • Patent number: 7579511
    Abstract: Provided is a process for making cyclohexylbenzene.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: August 25, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Jihad Mohammed Dakka, Lorenzo Cophard DeCaul, Teng Xu
  • Patent number: 7544228
    Abstract: One form of the disclosure includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Al, Si, Mg, Ca, Y, Fe, Mn, Group IV, Group V, Group VI elements, and mixtures thereof, Q is oxide, R is a base metal selected from the group consisting of Fe, Ni Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al and Si and at least one reactive wetting element selected from the group consisting of Ti, Zr, Hf, Ta, Sc, Y, La, and Ce, wherein the ceramic phase (PQ) ranges from about 55 to 95 vol % based on the volume of the cermet and is dispersed in the binder phase (RS) as particles with a diameter of 100 microns or greater. Another form of the disclosure relates to a bimodal size distribution of the metal oxide ceramic phase within the metal matrix phase.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: June 9, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao V. Bangaru, John R. Peterson, Robert L. Antram, Christopher J. Fowler
  • Patent number: 7504465
    Abstract: The present invention is related to a linear functional polymer having repeating units A, B and D. Unit A represents —CH2—, unit B represents and unit D represents where R1 represents a polar functional group. There are at least four A units separating each B unit, each D unit, and each B and D unit. The value y represents the total number of B units and is an integer greater than or equal to 1. The total number of D units is represented by h and is an integer greater than or equal to 0. And x represents the total number of A units and is an integer sufficient that the molar fraction of the B and D units in the linear functional polymer is represented by a value j defined by the equation: j = y + h x + y + h ? 0.032 . The present invention is also directed to a method for preparing such linear functional polymers by copolymerizing a first polar substituted monomer and a second non-polar unsubstituted monomer.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 17, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa S. Baugh, Stephen E. Lehman, Jr., Kenneth B. Wagener, Donald N. Schulz, Enock Berluche